CIESC Journal ›› 2019, Vol. 70 ›› Issue (S1): 202-210.doi: 10.11949/j.issn.0438-1157.20181393

• Material science and engineering, nanotechnology • Previous Articles     Next Articles

Microwave synthesis and properties of dioctadecyl tetrahydroxyethyl dibromopropane diammonium

Siyu PENG1(),Cheng ZHENG1,2(),Taoyan MAO1,Yuan WEI1,Huafeng SONG1   

  1. 1. Institute of Fine Chemical Engineering, Guangzhou University, Guangzhou 510006, Guangdong, China
    2. Guangzhou Vocational College of Science and Technology, Guangzhou 510550, Guangdong, China
  • Received:2018-11-21 Revised:2018-11-26 Online:2019-03-31 Published:2019-04-26
  • Contact: Cheng ZHENG E-mail:575570774@qq.com;zhengcheng5512@163.com

Abstract:

A gemini surfactant called dioctadecyl tetrahydroxyethyl dibromopropane diammonium (DTDD) was synthesized via quaternization reaction under the condition of microwave and high pressure using octadecyl diethanolamine and 1,3-dibromopropane as the main raw materials. The target compound was characterized by IR and1H NMR, and its purity was determined by HPLC-ELSD. By analysing the single-factor and orthogonal array design experiments, the optimal synthesis conditions for the synthesis of DTDD by microwave method were determined as follows: microwave power was set to 900W, reaction time was 8h and reaction temperature was 140°C, reaching a yeild of 92%. Compared with the traditional heating method, the reaction rate using microwave synthesis was greatly increased. The critical micelle concentration (CMC), surface tension, Kraft point, and foam properties of the product and the traditional surfactant octadecylmethyldihydroxyethyl ammonium bromide (OMDAB) were determined. The performance test results showed that compared with OMDAB, the target product had good surface properties with the critical micelle concentration of 0.087 g/L and the corresponding surface tension γ(CMC) of 31.09 mN/m.

Key words: polyhydroxyl, surfactants, high-pressure, microwave, interface, synthesis

CLC Number: 

  • TQ 423.99

Fig.1

Synthetic route of DTDD (a) and structural formula of OMDAB (b)"

Table 1

Effect of different solvents on product yield"

溶剂收率/%
乙醇53.14
正丙醇56.26
异丙醇48.93
甲醇59.15
正丁醇64.54

Fig.2

Effect of molar ratio of reactants on product yield"

Fig.3

Effect of reaction temperature on product yield"

Fig.4

Effect of microwave radiation power on product yield"

Fig.5

Effect of reaction time on product yield"

Table 2

Factors and levels of orthogonal experiments"

水平A(功率)/WB(反应时间)/ hC(温度)/℃
17006130
28007140
39008150

Table 3

Program and result of orthogonal experiments"

实验号ABC收率/ %
1700613090.11
2700714091.83
3700815090.72
4800614092.03
5800715090.74
6800813092.04
7900615092.27
8900713092.00
9900814092.22
K1272.66274.41274.15
K2274.81274.57276.08
K3276.49274.98273.73
k190.8991.4791.38
k291.691.5292.03
k392.1691.6691.24
极差R3.830.572.35
因素:主→次A→C→B
最优方案

A3B3C2

900 W, 8 h, 140℃

重复实验平均收率: 92.38%

Table 4

Comparison of various techniques"

合成方法反应时间/h收率/%
微波反应法464.54
传统加热法836.51

Fig.6

IR spectrum of DTDD and octadecyl diethanolamine"

Fig.7

1H NMR spectrum of DTDD"

Fig.8

Thermogravimetric analysis of DTDD"

Fig.9

HPLC chromatogram of DTDD"

Fig.10

γ-lgC curve of DTDD and OMDAB"

Fig.11

Relation between benzene content and absorbance in sample solution"

Table 5

Emulsification time of various surfactant solutions for various lubricating oil phases"

样品乳化时间
煤油松节油
DTDD7 min 47 s32 min10 s1 h 20 min
OMDAB7 min10 s19 min 6 s1 h 2 min

Table 6

Foam performance test results for different surfactants"

样品泡沫高度/cm泡沫稳定性/%
0min5min
DTDD15.915.195.0
OMDAB10.19.089.1
1 JiX, TianM, WangY. Temperature-induced aggregate transitions in mixtures of cationic ammonium gemini surfactant with anionic glutamic acid surfactant in aqueous solution[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2016, 32(4): 972-981.
2 MobinM, AslamR, AslamJ. Non toxic biodegradable cationic gemini surfactants as novel corrosion inhibitor for mild steel in hydrochloric acid medium and synergistic effect of sodium salicylate: experimental and theoretical approach[J]. Materials Chemistry & Physics, 2017, 191: 151-167.
3 ZhouY, WangZ, HursthouseA, et al. Gemini surfactant-modified activated carbon for remediation of hexavalent chromium from water[J]. Water, 2018, 10(1): 91.
4 BrunsveldL, SchillJ, van DunS, et al. Synthesis and self-assembly of bay-substituted perylene diimide gemini-type surfactants as off-on fluorescent probes for lipid bilayers[J]. Chemistry - A European Journal, 2018, 24(30): 7734-7741.
5 KumarA, BanjareM K, SinhaS, et al. Imidazolium-based ionic liquid as modulator of physicochemical properties of cationic, anionic, nonionic, and gemini surfactants[J]. Journal of Surfactants & Detergents, 2018, 21(3): 355-366.
6 AsadovZ H, AhmadovaG A, RahimovR A, et al. Effect of spacer nature on surface properties of new counterion coupled gemini surfactants based on dodecyldiisopropylol amine and dicarboxylic acids[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2018, 550: 115-122.
7 El-SaidW A, MoharramA S, HusseinE M, et al. Design, synthesis, anticorrosion efficiency, and applications of novel Gemini surfactants for preparation of small-sized hollow spheres mesoporous silica nanoparticles[J]. Materials Chemistry & Physics, 2018, 211: 123-136.
8 聂红艳, 徐宝财, 周雅文. 特种表面活性剂和功能性表面活性剂(Ⅵ): 双子表面活性剂的性质及应用[J]. 日用化学工业, 2009, 39(5): 348-353.
NieH Y, XuB C, ZhouY W. Special surfactants and functional surfactants(Ⅵ): Properties and application of gemini surfactants[J]. China Surfactant Detergent & Cosmetics, 2009, 39(5): 348-353.
9 高阳, 刘佳. 单链型苯并咪唑阳离子与双子型苯并咪唑阳离子表面活性剂的性能比较[J]. 工程技术研究, 2017, (6): 241-242.
GaoY, LiuJ. Comparison of the properties of benzimidazole cationic imidazoles and benzimidazole cationic surfactants[J]. Engineering and Technological Research, 2017, (6): 241-242.
10 FaureD, GravierJ, LabrotT, et al. Photoinduced morphism of gemini surfactant aggregates[J]. Chemical Communications, 2005, (9): 1167-1169.
11 ChangH, WangY, CuiY, et al. Equilibrium and dynamic surface tension properties of Gemini quaternary ammonium salt surfactants with hydroxyl[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2016, 500: 230-238.
12 XuQ, WangL, XingF. Synthesis and properties of dissymmetric gemini surfactants[J]. Journal of Surfactants & Detergents, 2011, 14(1): 85-90.
13 卢庆祥, 傅式洲, 尹宝霖, 等. 季铵盐型双子表面活性剂的合成和性能[J]. 日用化学工业, 2009, 39(2): 81-84.
LuQ X, FuS Z, YinB L, et al. Synthesis and properties of quaternary ammonium Gemini surfactants[J]. China Surfactant Detergent & Cosmetics, 2009, 39(2): 81-84.
14 郭乃妮, 郑敏燕, 杨连利. 季铵盐阳离子双酯表面活性剂CDESA的合成研究[J]. 化学研究与应用, 2018, 30(1): 105-109.
GuoN N, ZhengM Y, YangL L. Research on synthesis of quaternary ammonium salt cationic diester surfactants CDESA[J]. Chemical Research and Application, 2018, 30(1): 105-109.
15 NeochoritisC G, ZarganestzitzikasT, TsoleridisC A, et al. One-pot microwave assisted synthesis under green chemistry conditions, antioxidant screening, and cytotoxicity assessments of benzimidazole Schiff bases and pyrimido[1,2-a]benzimidazol-3(4H)-ones[J]. European Journal of Medicinal Chemistry, 2011, 46(1): 297-306.
16 毛展. 微波辅助非均相催化剂用于绿色有机合成的研究[D]. 上海: 上海师范大学, 2016.
MaoZ. Microwave-assisted heterogeneous catalysts for green organic synthesis[D]. Shanghai: Shanghai Normal University, 2016.
17 胡雪原. 离子液体和微波技术在绿色有机合成中的应用[D]. 新乡: 河南师范大学, 2005.
HuX Y. Application of ionic liquid and microwave technology in green organic synthesis[D]. Xinxiang: Henan Normal University, 2005.
18 ErganB T, BayramogluM. Investigation of the microwave effect: a new approach for the solvent effect on the microwave-assisted decomposition reaction of 2,2′-azobis(isobutyronitrile)[J]. Industrial & Engineering Chemistry Research, 2014, 53(33): 13016-13022.
19 LinJ, ZhuM, WuX, et al. Microwave-assisted synthesis of trisiloxane superspreader and its superspreading behavior on plant leaves surfaces[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2016, 511: 190-200.
20 UmraoS, GuptaT K, KumarS, et al. Microwave-assisted synthesis of boron and nitrogen co-doped reduced graphene oxide for the protection of electromagnetic radiation in Ku-band[J]. ACS Applied Materials & Interfaces, 2015, 7(35): 19831-19842.
21 韦星船, 郑成, 刘晓国, 等. 一种季铵盐双子表面活性剂的微波合成及性能研究[J]. 化学研究与应用, 2009, 21(3): 338-343.
WeiX C, ZhengC, LiuX G, et al. Microwave synthesis and properties of a quaternary ammonium Gemini surfactant[J]. Chemical Research and Application, 2009, 21(3): 338-343.
22 孙莉, 张强, 李春义, 等. 双子季铵盐的静态合成及表征[J]. 化学试剂, 2015, 37(10): 913-915.
ShunL, ZhangQ, LiC Y, et al. Static synthesis and characterization of cationic Gemini surfactants[J]. Chemical Reagents, 2015, 37(10): 913-915.
23 程文静, 郑成, 毛桃嫣, 等. 十八烷基甲基二羟乙基溴化铵的微波合成及性能[J]. 化工学报, 2011, 62(2): 566-573.
ChengW J, ZhengC, MaoT Y, et al. Microwave synthesis technique and properties of octadecylmethyldihydroxyethyl ammonium bromide[J]. CIESC Journal, 2011, 62(2): 566-573.
24 于涛, 刘华沙, 王超群, 等. 烷基芳基磺酸钠对烷烃的乳化性能[J]. 应用化学, 2011, 28(5): 560-564.
YuT, LiuH S, WangC Q, et al. Sodium alkyl sulfonate emulsifying performance on alkanes[J]. Chinese Journal of Applied Chemistry, 2011, 28(5): 560-564.
25 吕彤. 表面活性剂合成技术[M]. 北京: 化学工业出版社, 2016: 133.
LyuT. Surfactant Synthesis Technology[M]. Beijing: Chemical Industry Press, 2016: 133.
26 BekrekV, NevecnT. A study of effect of temperature on the influence of medium on the reaction of triethylamine with ethyl iodide[J]. Collection of Czechoslovak Chemical Communications, 1991, 56(4): 874-879.
27 冯刚. 微波辅助有机反应及微波合成中的“非热效应”研究[D]. 重庆: 重庆大学, 2009.
FengG. Microwave-assisted organic reactions and “non-thermal effects” in microwave synthesis[D]. Chongqing: Chongqing University, 2009.
28 AlcaldeM A, JoverA, MeijideF, et al. Synthesis and characterization of a new gemini surfactant derived from 3α,12α-dihydroxy-5β-cholan-24-amine (steroid residue) and ethylenediamintetraacetic acid (spacer)[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2008, 24(12): 6060-6066.
29 HanL, YeZ, ChenH, et al. The interfacial tension between cationic gemini surfactant solution and crude oil[J]. Journal of Surfactants & Detergents, 2009, 12(3): 185-190.
30 李晓萍, 金向军. Gemini表面活性剂的结构特性及其应用[J]. 白城师范学院学报, 2006, 20(4): 29-31.
LiX P, JinX J. Structural properties of Gemini surfactants and their applications[J]. Journal of Baicheng Normal University, 2006, 20(4): 29-31.
31 王丽艳, 赵明, 邢凤兰, 等. 双子表面活性剂[M]. 北京: 化学工业出版社, 2013: 33.
WangL Y, ZhaoM, XingF L, et al. Gemini Surfactants[M]. Beijing: Chemical Industry Press, 2013: 33.
[1] Hui SHANG, Lu LIU, Hanmo WANG, Wenhui ZHANG. Effect of microwave field on hydrogen bonds in glycerol aqueous solution system [J]. CIESC Journal, 2019, 70(S1): 23-27.
[2] Yanrao CHEN, Taoyan MAO, Cheng ZHENG. Microwave synthesis and properties of dioctadecyldihydroxyethyl ammonium bromide [J]. CIESC Journal, 2019, 70(S1): 226-234.
[3] Ning QIN, Qing MIN, Kaiyuan SHAO, Wenxiang HU. Synthesis of 3-methyl-benzidine hydrochloride [J]. CIESC Journal, 2019, 70(S1): 242-247.
[4] Guanghua ZHANG, Qiuchen DONG, Jing LIU. Two-phase mass transfer of multi-benzene gemini quaternary ammonium salt in oil-water [J]. CIESC Journal, 2019, 70(S1): 61-68.
[5] Hui SHANG, Yu DING, Wenhui ZHANG. Research progress of microwave assisted biodiesel production [J]. CIESC Journal, 2019, 70(S1): 15-22.
[6] Zhaowen ZENG, Cheng ZHENG, Taoyan MAO, Yuan WEI, Runhui XIAO, Siyu PENG. Progress in research and application of microwave in chemical process [J]. CIESC Journal, 2019, 70(S1): 1-14.
[7] Mixia MA, Ning QIN, Qing MIN, Wenxiang HU. Resveratrol and polydatin by microwave-ultrasound extraction and determination by HPLC [J]. CIESC Journal, 2019, 70(S1): 124-129.
[8] Hao YANG, Eryan YAN. Simulation research of microwave heating efficiency for beamed energy thruster [J]. CIESC Journal, 2019, 70(S1): 93-98.
[9] Leigang ZHANG, Bo XU, Juan SHI, Zhenqian CHEN. Experimental study on condensation of FC-72 in narrow rectangular channel with ellipse-shape pin fins in microgravity [J]. CIESC Journal, 2019, 70(S1): 45-53.
[10] Dantong LIU, Cheng ZHENG, Taoyan MAO. Microwave extraction of cardiovascular Chinese medicine formula warming heart [J]. CIESC Journal, 2019, 70(S1): 115-123.
[11] Yucai ZENG, Xiaoling LIU, Qifeng LIANG, Jianquan LYU. One-pot synthesis of 2-amino-4-aryl-3-cyano-4H-benzochromene derivatives catalyzed by K2CO3 under microwave irradiation [J]. CIESC Journal, 2019, 70(S1): 110-114.
[12] Chaoqian WANG, Wenlong WANG, Zhe LI, Jing SUN, Zhanlong SONG, Xiqiang ZHAO, Yanpeng MAO. Energy consumption analysis of novel pyrolysis method of sewage sludge based on microwave-induced target-oriented heating [J]. CIESC Journal, 2019, 70(S1): 168-176.
[13] Qiang GAO, Hong LYU, Fan XIONG, Fei CHEN, Zeheng YANG, Weixin ZHANG. Preparation of LiFePO4/C plate cathode materials and their electrochemical properties [J]. CIESC Journal, 2019, 70(4): 1628-1634.
[14] Huiru WANG, Zhenyu LIU, Yuanpeng YAO, Huiying WU. Visualized experiment on solid-liquid phase change heat transfer enhancement with multiple PCMs [J]. CIESC Journal, 2019, 70(4): 1263-1271.
[15] Jie CHENG, Yajun GUO, Teng WANG, Miao GUI, Zhaohui LIU, Zhiqiang SUI. Void fraction distribution of vapor-water two-phase flow in vertical tube bundles using gamma densitometer [J]. CIESC Journal, 2019, 70(4): 1375-1382.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LING Lixia, ZHANG Riguang, WANG Baojun, XIE Kechang. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] LEI Zhigang, LONG Aibin, JIA Meiru, LIU Xueyi. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] SU Haifeng, LIU Huaikun, WANG Fan, LÜXiaoyan, WEN Yanxuan. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] WANG Jianlin, XUE Yaoyu, YU Tao, ZHAO Liqiang. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] SUN Fubao, MAO Zhonggui, ZHANG Jianhua, ZHANG Hongjian, TANG Lei, ZHANG Chengming, ZHANG Jing, ZHAI Fangfang. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] Gao Ruichang, Song Baodong and Yuan Xiaojing( Chemical Engineering Research Center, Tianjin University, Tianjin 300072). LIQUID FLOW DISTRIBUTION IN GAS - LIQUID COUNTER - CONTACTING PACKED COLUMN[J]. , 1999, 50(1): 94 -100 .
[7] Su Yaxin, Luo Zhongyang and Cen Kefa( Institute of Thermal Power Engineering , Zhejiang University , Hangzhou 310027). A STUDY ON THE FINS OF HEAT EXCHANGERS FROM OPTIMIZATION OF ENTROPY GENERATION[J]. , 1999, 50(1): 118 -124 .
[8] Luo Xiaoping(Department of Industrial Equipment and Control Engineering , South China University of Technology, Guangzhou 510641)Deng Xianhe and Deng Songjiu( Research Institute of Chemical Engineering, South China University of Technology, Guangzhou 5106. RESEARCH ON FLOW RESISTANCE OF RING SUPPORT HEAT EXCHANGER WITH LONGITUDINAL FLUID FLOW ON SHELL SIDE[J]. , 1999, 50(1): 130 -135 .
[9] Jin Wenzheng , Gao Guangtu , Qu Yixin and Wang Wenchuan ( College of Chemical Engineering, Beijing Univercity of Chemical Technology, Beijing 100029). MONTE CARLO SIMULATION OF HENRY CONSTANT OF METHANE OR BENZENE IN INFINITE DILUTE AQUEOUS SOLUTIONS[J]. , 1999, 50(2): 174 -184 .
[10]

LI Qingzhao;ZHAO Changsui;CHEN Xiaoping;WU Weifang;LI Yingjie

.

Combustion of pulverized coal in O2/CO2 mixtures and its pore structure development

[J]. , 2008, 59(11): 2891 -2897 .