CIESC Journal ›› 2019, Vol. 70 ›› Issue (S1): 186-192.doi: 10.11949/j.issn.0438-1157.20181217

• Energy and environmental engineering • Previous Articles     Next Articles

Design and experimental study on silica gel-water adsorption air cooler

Hongbin WANG1(),Jiajie PENG2,Haiquan SUN1,Quanwen PAN2(),Ruzhu WANG2,Hailiang WANG1,Zhaohong XU1   

  1. 1. Shandong Normal University Lishan College, Weifang 262500, Shandong, China
    2. Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2018-10-17 Revised:2019-01-23 Online:2019-03-31 Published:2019-04-26
  • Contact: Quanwen PAN;


The adsorption air cooler does not require the cooling water circuit and the cooling water pump, so it can meet the needs of miniaturized applications. In this paper, a silica gel-water adsorption air cooler was experimentally studied, which consists of two adsorbers, one condenser and one heat pipe type evaporator. The dynamic operating characteristics of the cooler were obtained. This paper discusses the influence of heat source temperature, cooling water inlet temperature and cold air outlet temperature on system performance. The experimental results show that the cooler can be effectively driven by low-grade heat source at 60—90℃. The cooling capacity of 0.84—2.29 kW and the corresponding COPs of 0.26—0.43 were achieved.

Key words: adsorption, silica gel-water, air cooler, design, desorption

CLC Number: 

  • TB 651


Schematic diagram of silica gel-water adsorption air cooler"

Table 1

Dimension parameters of adsorption bed"








Table 2

Design parameters of condenser"


Table 3

Design parameters of evaporator"


Table 4

Operational control of silica gel-water adsorption air cooler"



Schematic diagram of test system"

Table 5

Measuring equipment and parameters"




温度精度±0.1℃, 湿度精度




Inlet/outlet temperature profiles of heat transfer fluid"


System performance vs temperature of hot water inlet"


System performance vs temperature of cooling water inlet"


System performance vs temperature of chilled air outlet"

Table 6

Relative errors of experimental results"

1 PanQ W, WangR Z. Study on operation strategy of a silica gel-water adsorption chiller in solar cooling application[J]. Solar Energy, 2018, 172: 24-31.
2 孟晓伟, 武卫东, 朱成剑.用于吸附单元管的烧结沸石吸附剂的性能强化实验[J].制冷技术, 2014, 34(2): 20-25.
MengX W, WuW D, ZhuC J. Experiment on performance strengthening of sintered zeolite adsorbent for adsorption unit tube[J]. Chinese Journal of Refrigeration Technology, 2014, 34(2): 20-25.
3 LuZ S, WangR Z. Performance improvement by mass-heat recovery of an innovative adsorption air-conditioner driven by 50-80℃ hot water[J]. Applied Thermal Engineering, 2013, 55(1/2): 113-120.
4 WangD, ZhangJ, TianX, et al. Progress in silica gel-water adsorption refrigeration technology[J]. Renewable and Sustainable Energy Reviews, 2014, 30: 85-104.
5 GBU-Model Type NAK-Adsorptions Chiller [DB/OL]. 2018.https: //.
6 Silica Gel Chillers eCoo [DB/OL]. 2018 .http: //fahrenheit cool/en/products/chillers/ecoo/.
7 SahaB B, AkisawaA, KashiwagiT. Solar/waste heat driven two-stage adsorption cooler: the prototype[J]. Renewable Energy, 2001, 23(1): 93-101.
8 SahaB B, KoyamaS, Choon NgK, et al. Study on a dual-mode, multi-stage, multi-bed regenerative adsorption chiller[J]. Renewable Energy, 2006, 31(13): 2076-2090.
9 ChangW S, WangC C, ShiehC C. Design and performance of a solar-powered heating and cooling system using silica gel/water adsorption chiller[J]. Applied Thermal Engineering, 2009, 29(10): 2100-5.
10 MagnettoD, de BoerR, VastaS. TOPMACS: thermally operated mobile air conditioning systems[C]//Vehicle Thermal Management Systems Conference and Exhibition (VTMS10). Woodhead Publishing, 2011: 635-647.
11 WangD C, WuJ Y, XiaZ Z, et al. Study of a novel silica gel–water adsorption chiller (Ⅱ): Experimental study[J]. International Journal of Refrigeration, 2005, 28(7): 1084-1091.
12 ChenC J, WangR Z, XiaZ Z, et al. Study on a compact silica gel-water adsorption chiller without vacuum valves: design and experimental study[J]. Applied Energy, 2010, 87(8): 2673-2681.
13 LuZ S, WangR Z, XiaZ Z, et al. Experimental investigation adsorption chillers using micro-porous silica gel–water and compound adsorbent-methanol[J]. Energy Conversion and Management, 2013, 65: 430-437.
14 PanQ W, WangR Z, WangL W, et al. Design and experimental study of a silica gel-water adsorption chiller with modular adsorbers[J]. International Journal of Refrigeration, 2016, 67: 336-44.
15 KhalilA, El-AgouzE A, El-SamadonyY A F, et al. Experimental study of silica gel/water adsorption cooling system using a modified adsorption bed[J]. Science and Technology for the Built Environment, 2016, 22(1): 41-49.
16 RamyH M, OsamaM, MohamedL E, et al. Physical properties and adsorption kinetics of silica-gel/water for adsorption chillers[J]. Applied Thermal Engineering, 2018, 137: 368-376.
17 RamyH M, OsamaM, MohamedL E, et al. Revisiting the adsorption equilibrium equations of silica-gel/water for adsorption cooling applications[J]. International Journal of Refrigeration, 2018, 86: 40-47.
18 SouravM, KyawT, BidyutB S, et al. Performance evaluation and determination of minimum desorption temperature of a two-stage air cooled silica gel/water adsorption system[J]. Applied Energy, 2017, 206: 507-518.
19 SapienzaA, GullìG, CalabreseL, et al. An innovative adsorptive chiller prototype based on 3 hybrid coated/granular adsorbers[J]. Applied Energy, 2016, 179: 929-938.
20 SapienzaA, PalombaV, GullìG, et al. A new management strategy based on the reallocation of ads-/desorption times: experimental operation of a full-scale 3 beds adsorption chiller[J]. Applied Energy, 2017, 205: 1081-1090.
21 PauloJ V, JoséJ S, HerbertM, et al. Experimental chiller with silica gel: adsorption kinetics analysis and performance evaluation[J]. Energy Conversion and Management, 2017, 132: 172-179.
22 ChenQ F, DuS W, YuanZ X, et al. Experimental study on performance change with time of solar adsorption refrigeration system[J]. Applied Thermal Engineering, 2018, 138: 386-393.
23 FatihB, BenyoucefK, MiloudT. Experimental investigation of a solar adsorption refrigeration system working with silica gel/water pair: a case study for Bou-Ismail solar data[J]. Solar Energy, 2016, 131: 165-175.
24 GhilenN, GabsiS, MessaiS, et al. Performance of silica gel-water solar adsorption cooling system[J]. Case Studies in Thermal Engineering, 2016, 8: 337-345.
25 SouravM, PramodK, KandadaiS, et al. Development and performance studies of an air cooled two-stage multi-bed silica-gel + water adsorption system[J]. International Journal of Refrigeration, 2016, 67: 174-189.
26 BidyutB S, ShigeruK, KimC N, et al. Study on a dual-mode, multi-stage, multi-bed regenerative adsorption chiller[J]. Renewable Energy, 2005, 31(13): 2076-2090.
27 YangG Z, XiaZ Z, WangR Z, et al. Research on a compact adsorption room air conditioner[J]. Energy Conversion and Management, 2006, 47(15/16): 2167-2177.
28 潘权稳. 采用模块化吸附床的硅胶-水吸附式系统制冷性能研究及优化[D]. 上海: 上海交通大学, 2015.
PanQ W. Performance study and optimization of silica gel-water adsorption refrigeration system using modular adsorber[D]. Shanghai: Shanghai Jiao Tong University, 2015.
29 中华人民共和国国家质量监督检疫总局, 中国国家标准化管理委员会. 房间空气调节器: GB/T 7725—2004[S]. 北京: 中国标准出版社, 2004.
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Room air conditioners: GB/T 7725—2004[S]. Beijing: Standards Press of China, 2004.
30 国家质量监督检验检疫总局, 卫生部, 国家环境保护总局. 室内空气质量: GB/T 18883—2002[S]. 北京: 中国标准出版社, 2002.
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Ministry of Health of the People’s Republic of China, Ministry of Environmental Protection of the People’s Republic of China. Indoor air quality standard: GB/T 18883—2002[S]. Beijing: Standards Press of China, 2002.
[1] Sheng XU, Lingli LIU, Meng CAO, Shangxi ZHANG, Xin DAI, Yang LIU, Zhenxi WANG. Formation of framework supported pore for PVA/ZnO composite and Pb(Ⅱ) adsorption [J]. CIESC Journal, 2019, 70(S1): 130-140.
[2] Wenlong ZHANG, Xiaobei ZHAN, Luo CHEN, Zhiyong ZHENG, Li ZHU, Zhitao LI, Minjie GAO. Parameter estimation and cold model experiments of gastrointestinal simulation reactor [J]. CIESC Journal, 2019, 70(5): 1879-1886.
[3] Yamin LIU, Lei PENG, Fengying SU, Xiangxiang WANG, Yizhen HUANG, Zaichun LIN, Xiaojing YU, Yishan PEI. Study of CO2 adsorption on amine functionalized graphene oxide porous materials [J]. CIESC Journal, 2019, 70(5): 2016-2024.
[4] Jianglin WU, Zhaohui ZHANG, Liang WANG, Bin ZHAO, Tengfei LI, Mengmeng CHEN. Analysis of anti-fouling performance of wider spacer RO membrane module [J]. CIESC Journal, 2019, 70(4): 1446-1454.
[5] Donghai AN, Xiaolin HAN, Xingxing CHENG, Binxuan ZHOU, Ying ZHENG, Yong DONG. Effect mechanisms of different flue gas on adsorption of mercury by powder activated coke [J]. CIESC Journal, 2019, 70(4): 1575-1582.
[6] Mao LIN, Huosheng LI, Gaosheng ZHANG, Ping ZHANG, Jianyou LONG, Tangfu XIAO, Hongguo ZHANG, Jingfang XIONG, Yongheng CHEN. Removal of Tl from wastewater by nickel ferrite-based hydrothermal carbon coupled with hypochlorite oxidation [J]. CIESC Journal, 2019, 70(4): 1591-1604.
[7] Qian ZHANG, Xiangyang LIU, Wang CHEN, Heng WU, Pengying XIAO, Fangying JI, Chen LI, Haiming NIAN. Preparation of a novel phosphorus removal filler and optimization of phosphate removal adsorption bed process [J]. CIESC Journal, 2019, 70(3): 1099-1110.
[8] Xiaohang LI, Yun LIU, Yinjiao SU, Yang TENG, Yanjun GUAN, Kai ZHANG. Difference of fly ash characteristics from PC and CFB boilers and its effect on mercury adsorption capability [J]. CIESC Journal, 2019, 70(3): 1075-1082.
[9] Qichao XU, Jinbo JIANG, Xudong PENG, Jiyun LI, Yuming WANG. Unified model and geometrical optimization of bi-directional groove of dry gas seal based on genetic algorithm [J]. CIESC Journal, 2019, 70(3): 995-1005.
[10] Long LI, Tianshu GE, Xuannan WU, Yanjun DAI. Adsorption properties of paper based silica gel adsorbents for benzene vapor [J]. CIESC Journal, 2019, 70(3): 951-959.
[11] Yuhan ZHOU, Xiaoyu CHEN, Cheng ZUO, Qingjie GUO, Jun ZHAO. Performances of waste paper cellulose/SiO2 composite aerogel [J]. CIESC Journal, 2019, 70(3): 1120-1126.
[12] Lei WANG, Guiying FANG, Qingyuan YANG. Performance of metal-organic frameworks for CO2 capture from large-scale computational screening [J]. CIESC Journal, 2019, 70(3): 1135-1143.
[13] Jie YANG, Jiangyu QI, Yong SHA. Simulation and analysis of reactive dividing-wall column for methylal production process [J]. CIESC Journal, 2019, 70(3): 960-968.
[14] Xinyuan LIANG, Lei ZHANG, Linlin LIU, Jian DU. Study on rubber polymer using computer-aided molecular design method based on molecular dynamics [J]. CIESC Journal, 2019, 70(2): 525-532.
[15] Shun ZHU, Qi GUO, Dawei ZHANG, Qingchun YANG. Conceptual design and system analysis coal to ethylene glycol process integrated with efficient utilization of CO2 [J]. CIESC Journal, 2019, 70(2): 772-779.
Full text



No Suggested Reading articles found!