CIESC Journal ›› 2019, Vol. 70 ›› Issue (3): 830-839.doi: 10.11949/j.issn.0438-1157.20181154

• Thermodynamics • Previous Articles     Next Articles

Measurements and simulation for ternary system KCl-PEG4000-H2O at 288, 298 and 308 K

Xudong YU1,2,3(),Qin HUANG1,Lin WANG1,Maolan LI1,Hong ZHENG1,Ying ZENG1,3   

  1. 1. College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, China
    2. Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China
    3. Center of Panxi Strategic Mineral Resources Multi-Purpose Utilization, Chengdu 610059, Sichuan, China
  • Received:2018-10-08 Revised:2018-12-18 Online:2019-03-05 Published:2018-12-26
  • Contact: Xudong YU E-mail:xwdlyxd@126.com

Abstract:

The phase equilibrium relationship of the ternary system KCl-PEG4000-H2O at 288, 298 and 308 K was studied by isothermal dissolution equilibrium method. The corresponding phase diagram, density-composition diagram and refractive index-composition diagram were drawn. The results show that over the entire PEG 4000 composition rang studied only one liquid phase is obtained, without the biphase region formed at 288, 298 and 308 K. The phase diagram of system KCl-PEG4000-H2O consists of one homogeneous area with unsaturated liquid (L), an equilibrium area containing the solid phase of KCl and saturated liquid phase (S+L), one area with one liquid phase and two solid phases(2S+L). The area of (2S+L) decrease with the increasing of temperature, while the areas of (L) and (S+L) increase with the increasing of temperature. The solubility of KCl decreases with the addition of PEG 4000 at 288, 298 and 308 K. When wPEG4000 in the solution is less than 0.50, the temperature has little effect on the salting-out ratio of the system, while when wPEG4000 is higher than 0.50, the salting-out ratio of the system decreases with the increasing of temperature. The thermodynamics calculation of equilibrium data of system KCl-PEG4000-H2O at 288, 298 and 308 K was carried out by using the modified Pitzer equation, it can be seen from the comparison of experimental and calculation diagrams that the predictive solubilities agree well with the experimental values.

Key words: phase equilibria, thermodynamic properties, solubility, mixed solvents, Pitzer equation

CLC Number: 

  • O 642

Fig.1

Solubility for KCl in pure water at 288,298 and 308 K: ●,▲,■ solubility for KCl at 288,298 and 308 K by this work,○,Δ,□ solubility for KCl at 288,298 and 308 K from literatures[23,24,25,26,27,28]"

Table 1

Solubility of KCl in pure water at 288,298 and 308 K"

T/KSolubility/(g/g)Relative deviation(RD)
This workRef.

288

0.2485

0.2482[23]–0.0012
0.2484[24]–0.0004

298

0.2639

0.2642[25]0.0011
0.2645[26]0.0023
0.2630[27]–0.0034

308

0.2851

0.2824[23]–0.0095
0.2863[28]0.0042

"

No.

Density,ρ/

(g?cm–3)

Refractive index,nDComposition of equilibrated solutionRComposition of wet solid phase

Equilibrated

solid phase

w(KCl)w(PEG4000)w(KCl)w(PEG4000)
T=288 K
1A1.16711.36800.24850.00000.0000KCl
21.16491.37230.23870.03810.03960.88750.0056KCl
31.16221.37640.22190.07780.10700.86940.0131KCl
41.15921.38070.20730.11880.16560.86150.0208KCl
51.15691.38520.18990.16190.23570.70810.0583KCl
61.15481.38980.17580.20610.29240.75300.0618KCl
71.15201.39500.16130.25170.35070.69190.0925KCl
81.15101.40030.14480.29930.41740.69240.1077KCl
91.15071.40610.13000.34780.47680.69740.1210KCl
101.15091.41220.11880.39660.52210.70250.1339KCl
111.15161.41740.10560.44680.57510.64640.1766KCl
121.14961.42400.08930.50100.64060.66720.1831KCl
131.13641.42820.03890.57670.84340.72320.1661KCl
14B1.10711.42810.00000.64851.0000
T=298 K
15C1.17981.37040.26390.00000.0000KCl
161.17461.37350.25320.03740.04460.86880.0066KCl
171.17121.37750.23820.07620.10130.94420.0056KCl
181.16751.38200.22380.11640.15550.89570.0156KCl
191.16411.38610.20730.15840.21780.85410.0292KCl
201.16121.39060.19030.20250.28180.73490.0663KCl
211.15871.39560.17440.24780.34180.73470.0796KCl
221.15611.40020.15810.29470.40330.73180.0939KCl
231.15391.40590.14090.34350.46840.73280.1068KCl
241.15231.41140.12580.39340.52540.73400.1197KCl
251.15161.41730.10870.44530.58960.71890.1404KCl
261.14901.42290.09290.49900.64960.69760.1664KCl
271.14311.42820.06690.56000.74770.67890.1927KCl
281.14281.43400.05480.61300.79330.73760.1702KCl
29D1.11181.43140.00000.69901.0000
T=308 K
30E1.18471.36920.28510.00000.0000KCl
311.17941.37440.26800.03670.05980.97810.0011KCl
321.17481.37800.25100.07490.11960.92240.0078KCl
331.17071.38290.23710.11440.16850.94980.0075KCl
341.16581.38610.21850.15620.23360.94960.0101KCl
351.16291.39050.20300.19930.28800.82880.0428KCl
361.15891.39450.18410.24490.35440.87560.0373KCl
371.15591.40000.16800.29120.41090.74420.0895KCl
381.15221.40500.14900.34020.47720.76340.0946KCl
391.14971.41010.13230.39050.53600.72830.1222KCl
401.14641.41590.11530.44200.59570.70340.1482KCl
411.14411.42150.09730.49660.65860.71910.1545KCl
421.14211.42720.07960.55230.72080.75300.1482KCl
431.13561.43210.05920.61010.79230.71340.1859KCl
441.13081.43370.04410.66890.84530.18450.5707KCl
451.12741.43760.04000.71910.85990.17040.6214KCl
46F1.10891.44450.00000.78001.0000

Fig.2

Phase diagram of KCl-PEG4000-H2O at 288,298 and 308 K"

Fig.3

Salting-out ratio(R) for KCl-PEG4000-H2O at 288,298 and 308 K"

Fig.4

Phase diagram of KCl-PEG4000-H2O at 288,298 and 308 K"

Fig.5

Comparison of phase diagrams of Ref.[16] and experimental for KCl-PEG4000-H2O at 298 K"

Fig.6

Diagrams of density vs composition and refractive index vs composition for system KCl-PEG4000-H2O at 288,298 and 308 K"

Table 3

Binary parameters and cross parameters for ternary system KCl-PEG4000-H2O at 288,298 and 308 K"

二元参数
T/KB11×102C111×105β220×102β221×102C222?×103Npσ×102
2880.7088[19]1.296[19]–0.4398–1.0950.7345110.3129
2980.7088[19]1.296[19]0.7523–0.83380.9664160.4356
3080.7088[19]1.296[19]0.9950–1.0531.981140.2434
交互作用参数
T/Kβ120β121C112C122Npσ
2880.101683–0.098970.000586–0.00325130.26
2980.114476–0.10325–0.00015–0.00294130.09
3080.1107810.056002–0.0007–0.00233150.20

Fig.7

Experimental and calculation phase diagram of KCl-PEG4000-H2O at 288,298 and 308 K"

1 侯献华, 樊馥, 郑绵平, 等. 青海盐湖钾盐资源开发利用及产业发展[J]. 科技导报, 2017, 35(12): 67-71.
HouX H, FanF, ZhengM P, et al. Development and utilization of potash resources of saline lakes in Qinghai province[J]. Sci. Technol. Rev. 2017, 35(12): 67-71.
2 FareloF, FernandesC, AvelinoA. Solubilities for six ternary systems: NaCl + NH4Cl + H2O, KCl + NH4Cl + H2O, NaCl + LiCl + H2O, KCl + LiCl + H2O, NaCl + AlCl3 + H2O, NaCl + AlCl3 + H2O and KCl + AlCl3 + H2O at T = (298 to 333) K[J]. J. Chem. Eng. Data., 2005, 50(4): 1470-1477.
3 YangH T, LiangT Y, ZengD W, et al. Phase diagram of the quaternary system LiCl + MgCl2 + KCl +H2O at 323.15 K[J]. CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 2017, 57: 126-133.
4 MengL Z, LiD, DengT L, et al. Solubility calculation for the brine system Na+, K+//Cl, Br-H2O using Pitzer thermodynamic model[J]. J. Chem. Eng. Jpn., 2018, 51(3): 185-189.
5 桑世华, 张婷婷, 傅超, 等. 四元体系Li+, K+, Mg2+//B4O72–-H2O 273 K相平衡[J]. 化工学报, 2017, 68(9): 3343-3349.
SangS H, ZhangT T, FuC, et al. Phase equilibria in quaternary system Li+, K+, Mg2+//B4O72–-H2O at 273 K[J]. CIESC Journal, 2017, 68(9): 3343-3349.
6 ZhangX, SangS H, ZhongS Y, et al. Equilibria in the ternary system SrCl2-KCl-H2O and the quaternary system SrCl2-KCl-NaCl-H2O at 323 K[J]. Russ. J. Phys. Chem. A, 2015, 89(12): 2322-2326.
7 于旭东, 刘敏, 王林, 等. 三元体系硼酸钾+硼酸铷+水和硼酸铷+硼酸镁+水323 K相平衡[J]. 高校化学工程学报, 2018, 32(3): 514-521.
YuX D, LiuM, WangL, et al. Phase equilibria of potassium borate + rubidium borate + H2O and rubidium borate + magnesium borate + H2O aqueoue ternary systems at 323 K[J]. J. Chem. Eng. Chin. Univ., 2018, 32(3): 514-521.
8 GuoS S, YuX D, ZengY. Phase equilibria for the aqueous reciprocal quaternary system K+, Mg2+//Cl-, Borate-H2O at 298 K[J]. J. Chem. Eng. Data, 2016, 61(4): 1566-1572.
9 YuX D, ZengY, GuoS S, et al. Stable phase equilibrium and phase diagram of the quinary system Li+, K+, Rb+, Mg2+//borate-H2O at T=348.15 K[J]. J.Chem. Eng. Data, 2016, 61(3): 1246-1253.
10 YuX D, ZengY, ChenP J, et al. Solid-liquid equilibrium of the quaternary system lithium, potassium, rubidium, and borate at T = 323 K[J]. J. Chem. Eng. Data, 2018, 63(8): 3125-3129.
11 YuX D, ZengY, MuP T, et al. Solid-liquid equilibria in the quinary system LiCl-KCl-RbCl-MgCl2-H2O at T = 323 K[J]. Fluid Phase Equilib., 2015, 387: 88-94.
12 LiZ Q, YuX D, YinQ H, et al. Thermodynamics metastable phase equilibria of aqueous quaternary system LiCl + KCl + RbCl+ H2O at 323.15 K[J]. Fluid Phase Equilib., 2013, 358: 131-136.
13 任永胜, 何婷婷, 谢娟, 等. 333.15 K K+, NH4+//Cl, SO42–-H2O和K+, NH4+//Cl, SO42–-(CH2OH)2-H2O体系固液相平衡[J]. 化工学报, 2018, 69(7): 2838-2850.
RenY S, HeT T, XieJ, et al. Phase equilibria in systems K+, NH4+//Cl, SO42–-H2O and K+, NH4+//Cl, SO42--(CH2OH)2-H2O at 333.15 K[J]. CIESC Journal, 2018, 69(7): 2838-2850.
14 SampaioV S, BonomoR C F, Monteiro FilhoE S, et al. Phyical properties and liquid-liquid equilibrium of aqueous two-phase systems containing poly(ethylene glycol) + potassium chloride + sodium polyacrylate [J]. J. Chem. Eng. Data, 2012, 57(12): 3651-3657.
15 雷红, 李淑妮, 翟全国, 等. 298.15和308.15 K时1,2-丙二醇 + MCl (M=Na, K, Rb, Cs) + H2O三元体系的溶解度、密度和折射率[J]. 物理化学学报, 2012, 28(7): 1599-1607.
LeiH, LiS N, ZhaiQ G, et al. Solibility, density and refractive index for the ternary systems of 1,2-propanediol, MCl (M=Na, K, Rb, Cs) and H2O at 298.15 and 308.15 K [J]. Acta Phys. -Chim. Sin., 2012, 28(7): 1599-1607.
16 TaboadaM E, GalleguillosH R, GraberT A. Compositions, densities, conductivities, and refractive indices of potassium chloride or/and sodium chloride +PEG4000 + water at 298.15 and liquid-liquid equilibrium of potassium chloride or sodium chloride +PEG4000 + water at 333.15 K[J]. J. Chem. Eng. Data, 2005, 50 (1): 264-269.
17 Hernandes-LuisF, Rodriguez-RaposoR, GalleguillosH, et al. Acivity coefficients of KCl in PEG4000 + water mixtures at 288.15, 298.15 and 308.15 K[J]. Fluid Phase Equilib., 2010, 295: 163-171.
18 LoveraJ A, PadillaA P, GalleguillosH, et al. Correlation of the solubilities of alkali chlorides in mixed solvents: polyethylene glycol + H2O and ethanol + H2O[J]. CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 2012, 38: 35-42.
19 WuY T, LinD Q, ZhuZ Q, et al. Prediction of liquid-liquid equilibria of polymer-salt aqueous two-phase systms by modified Pitzer’s virial equation[J]. Fluid Phase Equilib., 1996, 124: 67-79.
20 FosbolP L, ThomsenK, StenbyE H. Reverse schreinemakers method for experimental analysis of mixed-solvent electrolyte systems [J]. J. Solution Chem., 2009, 38(1): 1-14.
21 中国科学院青海盐湖研究所. 卤水和盐的分析方法(第二版)[M]. 北京:科学出版社, 1988: 69-72.
Institute of Qinghai Salt-Lake of Chinese Academy of Sciences. Analytical Methods of Brines and Salts (2nd ed) [M]. Beijing: Chinese Science Press, 1988: 69-72.
22 ChelugetE L, GelinasS, VeraJ H, et al. Liquid-liquid equilibrium of aqueous mixtures of poly(propylene glycol) with NaCl [J]. J. Chem. Eng. Data, 1994, 39(1): 127-130.
23 DengT L, LiD C, WangS Q. Metastable phase equilibrium in the aqueous ternary system (KCl-CaCl2-H2O) at (288.15 and 308.15) K[J]. J. Chem. Eng. Data, 2008, 53(4): 1007-1011.
24 LongJ, TangJ H, YouY K, et al. Phase equilibrium in the aqueous ternary system KH2PO4+KCl+H2O at (288.15 and 303.15) K[J]. J. Chem. Eng. Data, 2015, 60(6): 1906-1909.
25 ShenW, RenY S, ZhangX R, et al. Solid-liquid phase equilibrium for the ternary system (potassium chloride + potassium dihydrogen phosphate + water) at (298.15 and 313.15) K[J]. J. Chem. Eng. Data, 2015, 60(7): 2070-2078.
26 LinS Q, TangJ H, TengJ, et al. Phase equilibrium in the system KH2PO4 + KCl +H3PO4 at 298.15 K and 308.15 K[J]. J. Chem. Eng. Data, 2017, 62(12): 4169-4173.
27 JiaX Y, LiJ, JinY, et al. Solid-liquid equilibria in the quaternary system Na+, K+//HPO42–, Cl-H2O and its subsystems Na+//HPO42–, Cl-H2O, K+//HPO42–, Cl-H2O, and Na+, K+//HPO42–-H2O at 298.2 K[J]. J. Chem. Eng. Data, 2017, 62(11): 3679-3686.
28 MengR, LiS N, ZhaiQ G, et al. Solubilities, densities, and refractive indices for the ternary systems glycerin + MCl + H2O (M=Na, K, Rb, Cs) at (298.15 and 308.15) K[J]. J. Chem. Eng. Data, 2011, 56(12): 4643-4650.
29 PitzerK S. Thermodynamics of electrolytes. I. Theoretical basis and general equations[J]. J. Phys. Chem., 1973, 77(2): 268-277.
30 HariveC E, EugsterH P, WeareJ H. Mineral equilibria in the six-component seawater system, Na-K-Mg-Ca-SO4-Cl-H2O at 25℃. II: Compositions of the saturated solutions[J]. Geochim. Cosmochim. Acta., 1982, 46(9): 1603-1618.
31 CleggS L, RardJ A, MillerD G. Isopiestic determination of the osmotic and activity coefficients of NaCl+SrCl2+H2O at 298.15K and representation with an extended ion-interaction model. J. Chem. Eng. Data, 2005, 50(4): 1162-1170.
32 KrevelenD W V, NijehuisK T. Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions[M].(4th ed). Amsterdam: Elsevier, 2009: 319-321.
33 GuoL J, HanH J, DongO Y, et al. Thermodynamics and phase equilibrium of the high concentration solid solution-aqueous solution system KCl-RbCl-H2O from T = 298.15 K to T = 323.15 K[J]. J. Chem. Thermodyn., 2016, 106: 285-294.
[1] Lijie SHI, Min WANG. Phase behavior of K-Mg mixed salt during transformation-flotation from Yiliping magnesium sulfate-type salt lake [J]. CIESC Journal, 2019, 70(5): 1832-1841.
[2] Xiaoxue CAO, Shaochang JI, Wenjie KUANG, Anping LIAO, Ping LAN, Jinyan ZHANG. Crystallization thermodynamics of L-phenylalanine in methanol-water solvent [J]. CIESC Journal, 2019, 70(4): 1255-1262.
[3] Wanqiang LIU, Haixia LU, Fengping LIU, Guanfan CHEN, Tian HU, Ming YUE, Minghua QIU. Estimation of thermal conductivity of liquid alcohols using finite element solution based on principle of minimum potential energy [J]. CIESC Journal, 2019, 70(4): 1245-1254.
[4] Xiaoxue CAO, Shaochang JI, Wenjie KUANG, Anping LIAO, Ping LAN, Jinyan ZHANG. Solubility and ternary phase diagram of azithromycin dihydrate in water-organic solvent [J]. CIESC Journal, 2019, 70(3): 817-829.
[5] SUN Yanjun, DI Gaolei, XIA Juan, WANG Xiaopo, JIN Liwen. Thermodynamic analysis of absorption refrigeration cycles using ionic liquids as absorbents [J]. CIESC Journal, 2018, 69(S2): 38-44.
[6] LI Ran, LIU Jingjun, LI Yuxing, YIN Yue, ZHU Jianlu, CHEN Wenjie, WANG Wuchang. Selection of state equations for evaporation calculation in LNG receiving terminal [J]. CIESC Journal, 2018, 69(S2): 31-37.
[7] LI Siguang, LI Yanjun, YANG Longbin, SHAO Yazhou, SUN Jianrong, XU Runzhang. Prediction of phase equilibrium of gas hydrates based on different equations of state [J]. CIESC Journal, 2018, 69(S1): 8-14.
[8] ZHANG Haiyong, LIU Qian, LIU Xingkun, ZHANG Xianglan, XIE Qiang, WANG Yonggang. Phase equilibrium and separation of n-dodecane-toluene-phenol in low temperature coal tar [J]. CIESC Journal, 2018, 69(8): 3479-3487.
[9] REN Yongsheng, HE Tingting, XIE Juan, CAI Chao. Phase equilibria in systems K+, NH4+//Cl-, SO42--H2O and K+, NH4+//Cl-, SO42--H2O at 313.15 K [J]. CIESC Journal, 2018, 69(7): 2838-2850.
[10] GE Jing, ZHU Jiahua, XIA Sulan, LIU Shizhong. Solubility determination of calcium sulfate dihydrate in ammonium sulfate solution [J]. CIESC Journal, 2018, 69(7): 2829-2837.
[11] JIN Wufeng, YU Bin, GAO Pan, XU Lei. Effect of solubility between R32 and new PVE oil on performance of air conditioning system [J]. CIESC Journal, 2018, 69(4): 1631-1637.
[12] YANG Jian, MENG Xianyang, GAO Kehui, WU Jiangtao. Helmholtz equation of state for n-pentene [J]. CIESC Journal, 2018, 69(4): 1315-1323.
[13] CHEN Yun, LÜ Ran, XIONG Kangning, ZHANG Tao, LI Libo. Experimental determination,thermodynamic modeling and process simulation of methyl isopropyl ketone-phenol-hydroquinone-water quaternary systems [J]. CIESC Journal, 2018, 69(4): 1299-1306.
[14] OUYANG Bo, KONG Ming, QIAN Chao, CHEN Xinzhi. Measurement and correlation of solubility of diphenyl sulfoxide in several solvents [J]. CIESC Journal, 2018, 69(4): 1307-1314.
[15] HU Dongdong, BAO Lei, LIU Tao, LANG Meidong, ZHAO Ling. Interaction between supercritial carbon dioxide-cosolvent and poly(vinyl acetate) [J]. CIESC Journal, 2018, 69(2): 555-562.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LING Lixia, ZHANG Riguang, WANG Baojun, XIE Kechang. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] LEI Zhigang, LONG Aibin, JIA Meiru, LIU Xueyi. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] SU Haifeng, LIU Huaikun, WANG Fan, LÜXiaoyan, WEN Yanxuan. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] WANG Jianlin, XUE Yaoyu, YU Tao, ZHAO Liqiang. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] SUN Fubao, MAO Zhonggui, ZHANG Jianhua, ZHANG Hongjian, TANG Lei, ZHANG Chengming, ZHANG Jing, ZHAI Fangfang. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] Gao Ruichang, Song Baodong and Yuan Xiaojing( Chemical Engineering Research Center, Tianjin University, Tianjin 300072). LIQUID FLOW DISTRIBUTION IN GAS - LIQUID COUNTER - CONTACTING PACKED COLUMN[J]. , 1999, 50(1): 94 -100 .
[7] Su Yaxin, Luo Zhongyang and Cen Kefa( Institute of Thermal Power Engineering , Zhejiang University , Hangzhou 310027). A STUDY ON THE FINS OF HEAT EXCHANGERS FROM OPTIMIZATION OF ENTROPY GENERATION[J]. , 1999, 50(1): 118 -124 .
[8] Luo Xiaoping(Department of Industrial Equipment and Control Engineering , South China University of Technology, Guangzhou 510641)Deng Xianhe and Deng Songjiu( Research Institute of Chemical Engineering, South China University of Technology, Guangzhou 5106. RESEARCH ON FLOW RESISTANCE OF RING SUPPORT HEAT EXCHANGER WITH LONGITUDINAL FLUID FLOW ON SHELL SIDE[J]. , 1999, 50(1): 130 -135 .
[9] Jin Wenzheng , Gao Guangtu , Qu Yixin and Wang Wenchuan ( College of Chemical Engineering, Beijing Univercity of Chemical Technology, Beijing 100029). MONTE CARLO SIMULATION OF HENRY CONSTANT OF METHANE OR BENZENE IN INFINITE DILUTE AQUEOUS SOLUTIONS[J]. , 1999, 50(2): 174 -184 .
[10]

LI Qingzhao;ZHAO Changsui;CHEN Xiaoping;WU Weifang;LI Yingjie

.

Combustion of pulverized coal in O2/CO2 mixtures and its pore structure development

[J]. , 2008, 59(11): 2891 -2897 .