CIESC Journal ›› 2019, Vol. 70 ›› Issue (3): 1027-1034.doi: 10.11949/j.issn.0438-1157.20180785

• Surface and interface engineering • Previous Articles     Next Articles

Mechanism prediction of flow-induced corrosion and optimization of protection measures in overhead system of atmospheric tower

Changchun HE1(),Lei XU1(),Wei CHEN1,Xiaofeng XU2,Pengwei OUYANG2   

  1. 1. Hangzhou Fluid Technology Co., Ltd., Hangzhou 310008, Zhejiang, China
    2. School of Mechanical Engineering and Automation, Zhejiang University of Science and Technology, Hangzhou 310008, Zhejiang, China
  • Received:2018-07-12 Revised:2018-12-11 Online:2019-03-05 Published:2018-12-19
  • Contact: Lei XU E-mail:hechangchungz@163.com;ryanxoo@foxmail.com

Abstract:

Corrosion failures often occur at the overhead cooling system in the atmospheric tower in a domestic oil refinery. Based on the material balance principle, this study uses the reverse derivation method and process simulation to analyze the flow corrosion failure mechanism of the atmospheric pressure overhead cooling system, including dew point corrosion, ammonium salt crystal deposition scale corrosion, and multiphase flow erosion. Generally, water injection is a convenient and efficient measure to eliminate dew-point corrosion and under-deposit corrosion caused by ammonium salt crystallization. Nevertheless, due to the restricted water injection flow rate and various water injection modes for the heat exchangers, corrosion failure still occurred in the overhead cooling system of the atmospheric tower. By simulating the overhead system, the suitable one of three water injection modes (in the main process pipe, in the heat exchangers and by a programming controller) can be determined to realize the long-term stable operation of the overhead cooling system in the atmospheric tower according to a given injected water flow rate.

Key words: corrosion, crystallization, dew point, equilibrium, water injection, double-drum system

CLC Number: 

  • TE 986

Fig.1

Under-deposit corrosion caused by ammonium chloride crystallization"

Fig.2

Process schematic of double-drum atmospheric tower overhead system"

Fig.3

Corrosion morphology of U-tube heat exchanger"

Table 1

Gas composition and flowrate in atmospheric tower overhead system"

组分体积分数/%组分体积分数/%
氢气01-丁烯0.12
空气1.98反-2-丁烯0
甲烷2.23顺-2-丁烯0.54
乙烷9.34碳五以上26.23
乙烯0一氧化碳0
丙烷20.43二氧化碳2.41
丙烯0硫化氢0.26
异丁烷9.47合计99.98
正丁烷26.97流量/(kmol·h-1)205.84

Table 2

Second-stage oil process parameters and composition in atmospheric tower overhead system"

流量/(t·h-1)温度/℃压力/MPa密度/(kg·m-3)HK/℃10%/℃50%/℃90%/℃KK/℃
74.140.30.076672.8253672126146

Table 3

First-stage oil (output + reflux) process parameters and composition in atmospheric tower overhead system"

流量/(t·h-1)温度/℃压力/MPa密度/(kg·m-3)HK/℃5%/℃10%/℃50%/℃90%/℃KK/℃
133.890.10.127726.4487483118161167

Table 4

Sour water process parameters and composition in atmospheric tower overhead system"

流量/

(t·h-1)

温度/

压力/

MPa

氨氮/(mg·L-1)

硫/

(mg·L-1)

pH氯离子/(mg·kg-1)
13.06400.178.676.57.5672.6

Fig.4

NH4Cl crystallization temperatures versus Cl- concentrations in sour water"

Fig.5

NH4Cl crystallization temperatures versus NH3 concentrations in sour water"

Fig.6

Products of partial pressures of NH3 and H2S versus temperatures"

Fig.7

Dew points of water phase versus H2O concentrations in overhead gas of atmospheric tower"

Table 5

Relationship between percentage of liquid water and injected water flowrate"

注水量/(t·h-1)液态水含量/%(mass)
21.25.26
22.08.76
22.310.01
23.615.05
25.120.22
26.725.09
28.529.92

Fig.8

Temperature profile of outer wall of heat exchanger tube bundle without water injection"

Fig.9

Temperature profile of outer wall of heat exchanger tube bundle with injected water flowrate of 1000 kg·h-1"

1 殷雪峰, 莫少明, 韩磊, 等. 常减压蒸馏装置塔顶空冷器腐蚀泄漏研究[J]. 石油化工腐蚀与防护, 2014, 31(4): 1-4.
YinX F, MoS M, HanL, et al. Study on corrosion leakage of atmosphere tower overhead air coolers[J]. Corrosion & Protection in Petrochemical Industry, 2014, 31(4): 1-4.
2 郭辉. 常压蒸馏装置塔顶系统腐蚀机理分析及措施[J]. 石油化工腐蚀与防护, 2017, 34(4): 62-64
GuoH. Mechanic analysis and countermeasures of corrosion in overhead system of atmospheric distillation unit[J]. Corrosions & Protection in Petrochemical Industry, 2017, 34(4): 62-64.
3 侯芙生. 中国炼油技术[M]. 北京: 中国石化出版社, 2011: 53-98.
HouF S. China Oil Refining Technology[M]. Beijing: Sinopec Press, 2011: 53-98.
4 SlavchevaE, ShoneB, TurnbullA. Review of naphthenic acid corrosion in oil refining[J]. Brit. Corros. J., 1999, 34(2): 125-131.
5 SchemppP. PreußK. TrögerM. About the correlation between crude oil corrosiveness and results from corrosion monitoring in an oil refinery[J]. Corrosion, 2016, 72(6): 843-855.
6 JohnsonD, McateerG, ZukH. The safe process of high naphthenic acid content crude oils—refinery experience and mitigation studies[J]. NACE Corrosion, 2003, 03645.
7 WuX Q, JingH M, ZhengY G, et al. Erosion–corrosion of various oil-refining materials in naphthenic acid[J]. Wear, 2004, 256: 133-144.
8 ShargayC A. Effect of nonextractable chlorides on refinery corrosion and fouling[R]. NACE Publication 34105, Houston, TX, 2005.
9 CayardM S. Crude distillation unit—distillation tower overhead system corrosion[R]. NACE Publication 34109, Houston, TX, 2009.
10 WuB, LiX, LiY, et al. Hydrolysis reaction tendency of low-boiling organic chlorides to generate hydrogen chloride in crude oil distillation. Energy Fuels, 2016, 30(2): 1524-1530.
11 关乐. 常压塔顶系统露点腐蚀控制研究[D]. 西安: 西安石油大学, 2014.
GuanL. The controlling research on dew point corrosion at the top system of the atmospheric tower[D]. Xi’an: Xi’an Shiyou University, 2014.
12 段永锋, 于凤昌, 崔中强, 等. 蒸馏塔顶系统露点腐蚀与控制[J]. 石油化工腐蚀与防护, 2014, 31(5): 29-33.
DuanY F, YuF C, CuiZ Q, et al. Dew-point corrosion in crude distillation unit overhead system and prevention[J]. Corrosion & Protection in Petrochemical Industry, 2014, 31(5): 29-33.
13 王凯. HCl-H2O体系露点腐蚀规律及预测方法研究[D]. 杭州: 浙江理工大学, 2013
WangK. Research of HCl-H2O system dew-point corrosion law and prediction method[D]. Hangzhou: Zhejiang Sci-Tech University, 2013.
14 王海博, 李云, 欧阳文彬, 等. Aspen Plus模拟预测常压塔顶冷凝系统露点及pH值[J]. 石油学报(石油加工), 2018, 34(3): 629-633.
WangH B, LiY, OuyangW B, et al. Aspen Plus predict water dew point and pH value of the overhead condensing system of crude atmospheric distillation unit[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2018, 34(3): 629-633.
15 WuY M. Calculations estimate process stream depositions[J]. Oil Gas J., 1994, 92(1): 38-41.
16 金浩哲, 叶浩杰, 偶国富, 等. 基于偏最小二乘法的加氢换热器NH4Cl结晶温度预测模型[J]. 石油学报(石油加工), 2017, 33(6): 1176-1182.
JinH Z, YeH J, OuG F, et al. Predicting model of ammonium salt crystallization temperature based on partial least squares approach in a hydrogenation heat-exchanger[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2017, 33(6): 1176-1182.
17 MunsonB R, CayardM S. Thermodynamic derivations of various ammonium salt deposition equations common to the refinery industry[J]. Corrosion, 2018, 74(10): 1158-1163.
18 SunA, FanD. Prediction, monitoring, and control of ammonium chloride corrosion in refining processes[J]. Corrosion, 2010, 10359.
19 KarimiA, VerdonC, MartinJ L, et al. Slurry erosion behavior of thermally sprayed WC-M coatings[J]. Wear, 1995, 186-197: 480-486.
20 RogersP M, HutchingsI M, LittleJ A. Coatings and surface treatments for protection against low-velocity erosion-corrosion in fluidized beds[J]. Wear, 1995, 186-197: 238-246.
21 PiehlR L, SinghA, HarveyC. Corrosion of reactor effluent air coolers[C]// NACE Corrosion. 1997: 97490.
22 HorvathR J, CayardM S, KaneR D. Prediction and assessment of ammonium bisulfide corrosion under refinery sour water service conditions[C]// NACE Corrosion. 2006: 06576.
23 HorvathR J, LagadV V, SrinivasanS, et al. Prediction and assessment of ammonium bisulfide corrosion under refinery sour water service conditons-part 2[C]// NACE Corrosion. 2010: 10349.
24 American Petroleum Institute. Design, materials, fabrication, operation, and inspection guidelines for corrosion control in hydroprocessing reactor effluent air cooler (REAC) systems: API RP 932-B-2012(2014)[S]. Washington D C: API Publishing Services, 2014.
25 TangP, YangJ, ZhengZ J, et al. Failure analysis and prediction of pipes due to the interaction between multiphase flow and structure[J]. Eng. Fail. Anal., 2009, 16: 1749-1756.
26 张建文, 苏国庆, 姜爱国. 液化气脱硫装置再生塔返塔管线弯头腐蚀失效机制分析[J]. 化工学报, 2018, 69(8): 3537-3547.
ZhangJ W, SuG Q, JiangA G. Corrosion failure mechanism of return pipeline elbow of regeneration tower in LPG desulfurization unit[J]. CIESC Journal, 2018, 69(8): 3537-3547.
27 中华人民共和国工业和信息化部. 高硫原油加工装置设备和管道设计选材导则: SH/T 3096—2012[S]. 北京: 中石化出版社, 2012.
Ministry of Industry and Information Technology. Material selection guideline for design of equipment and piping in units processing sulfur crude oils: SH/T 3096—2012[S]. Beijing: Sinopec Press, 2012.
28 中华人民共和国工业和信息化部. 高酸原油加工装置设备和管道设计选材导则: SH/T 3129—2012[S]. 北京: 中石化出版社, 2012.
Ministry of Industry and Information Technology. Material selection guideline for design of equipment and piping in units processing acid crude oils: SH/T 3129—2012[S]. Beijing: Sinopec Press, 2012.
29 国家石油和化学工业局. 石油化工设备和管道涂料防腐蚀技术规范: SH 3022—1999[S]. 北京: 中石化出版社, 1999.
State Bureau of Petroleum and Chemical Industry. Technical specification for the coating anticorrosion of equipment and piping in petrochemical industry: SH/T 3022—1999[S]. Beijing: Sinopec Press, 1999.
30 WhiteR A. Materials Selection for Petroleum Refineries and Gathering Facilities[M]. Houston: NACE International, 1998: 1-30.
[1] Guanghua ZHANG, Qiuchen DONG, Jing LIU. Two-phase mass transfer of multi-benzene gemini quaternary ammonium salt in oil-water [J]. CIESC Journal, 2019, 70(S1): 61-68.
[2] Chao PENG, Yuyuan WANG, Chang ai DENG, Fangfang ZHAO, Kuiyi YOU. Preparation of hydroxylamine sulfate by continuous reaction-extraction coupling technology [J]. CIESC Journal, 2019, 70(5): 1842-1847.
[3] Bing LI, Yi YANG, Zuohua LIU, Changyuan TAO, Deyin GU, Chuanlin XU, Yundong WANG. Solid-liquid chaotic mixing and leaching enhancement performance in phosphoric acid leaching process [J]. CIESC Journal, 2019, 70(5): 1742-1749.
[4] Yuling ZHANG, Liping ZHANG, Qian WANG, Xudong LI, Xiaodong LIU, Jinghong ZHANG. Optimization of extraction process of inorganic phosphorus in scale of circulating cooling system [J]. CIESC Journal, 2019, 70(3): 1083-1088.
[5] Dongyan LI, Wei WEI, Feng HAN. Preparation and corrosion resistance of SiC membrane using for dust removal in high temperature [J]. CIESC Journal, 2019, 70(1): 336-344.
[6] Miaomiao LUO, Ning GUO, Yi XU, Daoping LIU. Effects of graphene oxide on crystallization behavior of VS55 during cooling and warming [J]. CIESC Journal, 2019, 70(1): 370-378.
[7] Peiyuan PAN, Heng CHEN, Jian JIAO, Zhiyuan LIANG, Qinxin ZHAO. In-plant experimental study on desulfurized flue gas corrosion [J]. CIESC Journal, 2019, 70(1): 161-169.
[8] WU Di, HU Bin, WANG Ruzhu, JIANG Nanshan, LI Ziliang, YU Jingjing. Preliminary study on high temperature heat pump system with water refrigerant [J]. CIESC Journal, 2018, 69(S2): 95-100.
[9] LI Zhaoning, ZHAO Yanjie, TANG Yupeng. Adhesion characteristics of urea aqueous solution in solidification and crystallization [J]. CIESC Journal, 2018, 69(S2): 232-239.
[10] LIU Ruijian, LIANG Kunfeng, JIA Xueying, WANG Lin. Crystallization characteristics of dynamic formation process of ice slurry in small-scale ice making machine [J]. CIESC Journal, 2018, 69(S2): 450-458.
[11] TANG Erjun, YAO Mengmeng, GUO Xiaofeng, WANG Ruihong, LIU Shaojie, GAO Hao. Film formation for aqueous epoxy acrylate latex coatings [J]. CIESC Journal, 2018, 69(S1): 143-147.
[12] ZHANG Jianwen, SU Guoqing, JIANG Aiguo. Corrosion failure mechanism of return pipeline elbow of regeneration tower in LPG desulfurization unit [J]. CIESC Journal, 2018, 69(8): 3537-3547.
[13] QI Chang, LU Diannan, LIU Yongmin. Prediction of thermodynamic properties of n-alkanes based on temperature-corrected force field [J]. CIESC Journal, 2018, 69(8): 3338-3347.
[14] WANG Rui, XU Yanxia, SONG Xingfu, XU Zhigang, YU Jianguo. Falling film crystallization kinetics of paraxylene [J]. CIESC Journal, 2018, 69(8): 3460-3468.
[15] HU Mingtao, JU Pengfei, ZHAO Xuhui, TANG Yuming, ZUO Yu. Effects of different accelerated tests on failure process of epoxy/polyurethane coating [J]. CIESC Journal, 2018, 69(8): 3548-3556.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LING Lixia, ZHANG Riguang, WANG Baojun, XIE Kechang. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] LEI Zhigang, LONG Aibin, JIA Meiru, LIU Xueyi. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] SU Haifeng, LIU Huaikun, WANG Fan, LÜXiaoyan, WEN Yanxuan. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] WANG Jianlin, XUE Yaoyu, YU Tao, ZHAO Liqiang. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] SUN Fubao, MAO Zhonggui, ZHANG Jianhua, ZHANG Hongjian, TANG Lei, ZHANG Chengming, ZHANG Jing, ZHAI Fangfang. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] Gao Ruichang, Song Baodong and Yuan Xiaojing( Chemical Engineering Research Center, Tianjin University, Tianjin 300072). LIQUID FLOW DISTRIBUTION IN GAS - LIQUID COUNTER - CONTACTING PACKED COLUMN[J]. , 1999, 50(1): 94 -100 .
[7] Su Yaxin, Luo Zhongyang and Cen Kefa( Institute of Thermal Power Engineering , Zhejiang University , Hangzhou 310027). A STUDY ON THE FINS OF HEAT EXCHANGERS FROM OPTIMIZATION OF ENTROPY GENERATION[J]. , 1999, 50(1): 118 -124 .
[8] Luo Xiaoping(Department of Industrial Equipment and Control Engineering , South China University of Technology, Guangzhou 510641)Deng Xianhe and Deng Songjiu( Research Institute of Chemical Engineering, South China University of Technology, Guangzhou 5106. RESEARCH ON FLOW RESISTANCE OF RING SUPPORT HEAT EXCHANGER WITH LONGITUDINAL FLUID FLOW ON SHELL SIDE[J]. , 1999, 50(1): 130 -135 .
[9] Jin Wenzheng , Gao Guangtu , Qu Yixin and Wang Wenchuan ( College of Chemical Engineering, Beijing Univercity of Chemical Technology, Beijing 100029). MONTE CARLO SIMULATION OF HENRY CONSTANT OF METHANE OR BENZENE IN INFINITE DILUTE AQUEOUS SOLUTIONS[J]. , 1999, 50(2): 174 -184 .
[10]

LI Qingzhao;ZHAO Changsui;CHEN Xiaoping;WU Weifang;LI Yingjie

.

Combustion of pulverized coal in O2/CO2 mixtures and its pore structure development

[J]. , 2008, 59(11): 2891 -2897 .