CIESC Journal ›› 2018, Vol. 69 ›› Issue (S2): 9-16.doi: 10.11949/j.issn.0438-1157.20181148

Previous Articles     Next Articles

Principles and advances in perspiration cooling materials on human comfort adjustment

DING Yi1, DING Guoliang2, ZHUANG Dawei2   

  1. 1 Department of Electrical and Computer Engineering, University of California, California 95616, United States;
    2 Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2018-10-08 Revised:2018-10-15
  • Supported by:

    supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (51521004) and the Program of Shanghai Academic Research Leader (16XD1401500).

Abstract:

Fabrics with perspiration cooling technology will increase the perspiration efficiency of sweat and improve human thermal comfort. This article outlines the main features and principles of perspiration cooling technology, including rapid sweat absorption, rapid sweat perspiration, and high air permeability. New perspiration cooling materials are illustrated, covering moisture absorbent and quick-dry fibers, micropatterned superhydrophobic textiles, water-driven shape memory polymers, moisture-expansion multiply-layer composites, and moisture gradients driven polymer composites. The progress in the commercial development of functional clothing using perspiration cooling technology is presented. Finally, the advantages and disadvantages of various perspiration cooling technologies are summarized, and their development directions are suggested.

CLC Number: 

  • TK124

[1] ZHANG Y, BISHOP P A, GREEN J M, et al.Evaluation of a carbon dioxide personal cooling device for workers in hot environments[J].Journal of Occupational & Environmental Hygiene, 2010, 7(7):389-396.
[2] ZHANG G, ZHANG X, HUANG H, et al.Toward wearable cooling devices:highly flexible electrocaloric Ba0.67Sr0.33TiO3 nanowire arrays[J].Advanced Materials, 2016, 28(24):4811-4816.
[3] GAO C, KUKLANE K, HOLMÉR I.Cooling vests with phase change materials:the effects of melting temperature on heat strain alleviation in an extremely hot environment[J].European Journal of Applied Physiology, 2011, 111(6):1207.
[4] DELKUMBUREWATTE G B, DIAS T.Wearable cooling system to manage heat in protective clothing[J].Journal of the Textile Institute Proceedings & Abstracts, 2012, 103(5):483-489.
[5] Cooling fabrics market analysis, by type (synthetic and natural), by application (sports apparel, protective wear, lifestyle, and others), by region (North America, Europe, Asia Pacific, South & Central America, and MEA), and segment forecasts, 2018-2025[EB/OL].[2018-05-19].https://www.grandviewresearch.com/industry-analysis/cooling-fabrics-market.
[6] 唐虹, 简洁, 晓梦.可呼吸的面料——吸湿快干功能性面料的发展[J].中国服饰, 2007, (5):132-135. TANG H, JIAN J, XIAO M.Breathable fabric-the development of fast dry functional fabric[J].China Fashion, 2007, (5):132-135.
[7] 何天虹.纯纤维素纤维吸湿排汗快干织物的设计开发与研究[D].天津:天津工业大学,2007. HE T H.Design and development of cellulose fiber based fast dry fabric[D].Tianjin:Tianjin Polytechnic University, 2007.
[8] 倪迈.新型吸湿排汗针织运动服装面料的研究开发[D].上海:东华大学, 2010. NI M.Perspiration absorption of new fabrics knitted sportswear[D].Shanghai:Donghua University, 2010.
[9] 张红霞, 刘芙蓉, 王静, 等.织物结构对吸湿快干面料导湿性能的影响[J].纺织学报, 2008, 29(5):31-33. ZHANG H X, LIU F R, WANG J, et al.Effects of fabric weave and cover factor on moisture transfer ability of moisture absorbent and fast drying fabric[J].Journal of Textile Research, 2008, 29(5):31-33.
[10] XING S, JIANG J, PAN T.Interfacial microfluidic transport on micropatterned superhydrophobic textile[J].Lab on a Chip, 2013, 13(10):1937-1947.
[11] ZHONG Y, ZHANG F, WANG M, et al.Reversible humidity sensitive clothing for personal thermoregulation[J].Scientific Reports, 2017, 7:44208.
[12] LENG J, LAN X, LIU Y, et al.Shape-memory polymers and their composites:stimulus methods and applications[J].Progress in Materials Science, 2011, 56(7):1077-1135.
[13] 王文欣.环氧基和聚乙烯醇基形状记忆复合材料的驱动性能研究[D].哈尔滨:哈尔滨工业大学, 2017. WANG W X.Actuation properties of epoxy-based and poly(vinyl alcohol)-based shape memory composites[D].Harbin:Harbin Institute of Technology, 2017.
[14] QI X, YAO X, DENG S, et al.Water-induced shape memory effect of graphene oxide reinforced polyvinyl alcohol nanocomposites[J].Journal of Materials Chemistry A, 2014, 2(7):2240-2249.
[15] JUNG Y C, SO H H, CHO J W.Water responsive shape memory polyurethane block copolymer modified with polyhedral oligomeric silsesquioxane[J].Journal of Macromolecular Science Part B, 2006, 45(4):453-461.
[16] YANG B, LI C, LEE C M, et al.On the effects of moisture in a polyurethane shape memory polymer[J].Smart Materials & Structures, 2004, 13(1):191.
[17] HUANG W M, YANG B, AN L, et al.Water-driven programmable polyurethane shape memory polymer:demonstration and me-chanism[J].Applied Physics Letters, 2005, 86(11):114105.
[18] LIU Y, LI Y, YANG G, et al.Multi-stimuli responsive shape-memory polymer nanocomposite network cross-linked by cellulose nanocrystals[J].ACS Appl.Mater.Interfaces, 2015, 7(7):4118.
[19] BAI Y, CHEN X.A fast water-induced shape memory polymer based on hydroxyethyl cellulose/graphene oxide composites[J].Composites Part A:Applied Science & Manufacturing, 2017, 103:9-16.
[20] HAN C H, HAN D D, JIANG H B, et al.Facile fabrication of moisture responsive graphene actuators by moderate flash reduction of graphene oxides films[J].Optical Materials Express, 2017, 7(7):2617.
[21] XU G, CHEN J, ZHANG M, et al.An ultrasensitive moisture driven actuator based on small flakes of graphene oxide[J].Sensors & Actuators B Chemical, 2017, 242:418-422.
[22] WANG W, YAO L, CHENG C Y, et al.Harnessing the hygroscopic and biofluorescent behaviors of genetically tractable microbial cells to design biohybrid wearables[J].Science Advances, 2017, 3(5):e1601984.
[23] ANDY F.New fabric opens air vents with workout sweat[EB/OL].[2018-05-19].https://www.ucdavis.edu/news/new-fabric-opens-air-vents-workout-sweat.
[24] GE Y, CAO R, YE S, et al.A bio-inspired homogeneous graphene oxide actuator driven by moisture gradients[J].Chemical Communications, 2018, 54(25):3126-3129.
[25] BAUER F, DENNELER S, WILLERT-PORADA M.Influence of temperature and humidity on the mechanical properties of Nafion® 117 polymer electrolyte membrane[J].Journal of Polymer Science Part B:Polymer Physics, 2005, 43(7):786-795.
[26] MA M, GUO L, ANDERSON D G, et al.Bio-inspired polymer composite actuator and generator driven by water gradients[J].Science, 2013, 339(6116):186-189.
[27] ZHANG L, LIANG H, JACOB J, et al.Erratum:photogated humidity-driven motility[J].Nature Communications, 2015, 6:7429.
[28] HU J, MENG H, LI G, et al.A review of stimuli-responsive polymers for smart textile applications[J].Smart Material Structures, 2012, 21(5):53001-53023.
[29] TURNER K.Nike sphere macro react[EB/OL].[2018-05-19].https://www.ponoko.com/blog/how-to-make/nike-sphere-macro-react.
[30] Move over, moisture-wicking whatever[EB/OL].[2018-05-19].http://www.atacamadry.com.

[1] SHI Suli, LU Yuanwei, YU Qiang, WU Yuting. Optimization of heat removal modes for heat exchanger in molten salt single storage tank [J]. CIESC Journal, 2019, 70(3): 857-864.
[2] ZHANG Hang, WENG Jianhua, CUI Xiaoyu. Heat transfer performance of pulsating heat pipe with hygroscopic salt solution [J]. CIESC Journal, 2019, 70(3): 874-882.
[3] LIANG Ting, ZHANG Dan, YANG Qingzhong, YAN Junjie. Experimental study on temporal and spatial distribution of bubbles during initial stage of static flash of pure water [J]. CIESC Journal, 2019, 70(1): 49-55.
[4] LIU Zhongyan, SUN Dahan, JIN Xu, WANG Tianhao, MA Yitai. Evaluation research on boiling heat transfer model of CO2 in tube [J]. CIESC Journal, 2019, 70(1): 56-64.
[5] LIU Hong, HE Yang, CAI Chang, GAO Jiuliang, YIN Hongchao. Influence of ethanol and n-butanol additives on spray cooling [J]. CIESC Journal, 2019, 70(1): 65-71.
[6] LI Jingyan, LIU Zhongliang, ZHOU Yu, LI Yanxia. Study of thermal-hydrologic-mechanical numerical simulation model on CO2 plume geothermal system [J]. CIESC Journal, 2019, 70(1): 72-82.
[7] DU Baozhou, LI Huijun, GUO Baocang, KONG Lingjian, LIU Zhigang. Flow boiling heat transfer and pressure drop characteristics in micro channel with micro pin fins [J]. CIESC Journal, 2018, 69(12): 4979-4989.
[8] XIN Hui, CHEN Bin, ZHOU Zhifu, TIAN Jiameng. Numerical study of multi-pulsed cryogen spray cooling for laser lipolysis [J]. CIESC Journal, 2018, 69(12): 4966-4971.
[9] WANG Dongmin, DONG Lining, QUAN Xiaojun. Deposition mechanisms and boiling heat transfer of modified SiO2 nanoparticles deposition layer in boiling experiments [J]. CIESC Journal, 2018, 69(10): 4200-4205.
[10] YUAN Jindou, WANG Yanbo, HU Han, YU Xiongjiang, XU Jinliang. Flow condensation heat transfer on surfaces with different wettability in mini-channel [J]. CIESC Journal, 2018, 69(10): 4156-4166.
[11] LIANG Lingjiao, LIU Jinping, XU Xiongwen. Novel flat plate evaporator of loop gravity assisted heat pipe for high heat flux electronic cooling [J]. CIESC Journal, 2018, 69(10): 4231-4238.
[12] YAN Yan, DONG Jixian. Condensation heat transfer characteristic and flow pattern of steam in rectangular tube with different aspect ratio [J]. CIESC Journal, 2018, 69(9): 3851-3858.
[13] GU Xin, LUO Yuankun, XIONG Xiaochao, WANG Ke, TAO Zhilin. Influence of twisty flow heat exchanger's structural parameters on flow field and temperature field [J]. CIESC Journal, 2018, 69(8): 3390-3397.
[14] HUANG Jin, LI Xiaopeng, WANG Ting, HU Yanxin, SHENG Xinxin. Heat transfer performance of copper surface treatment MWCNTs/PA based on composites [J]. CIESC Journal, 2018, 69(7): 2956-2963.
[15] SUN Tao, CUI Guomin, CHEN Jiaxing. A structure evolution strategy motivated by large step size for optimization of heat exchanger network [J]. CIESC Journal, 2018, 69(7): 3135-3148.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!