CIESC Journal ›› 2018, Vol. 69 ›› Issue (8): 3383-3389.doi: 10.11949/j.issn.0438-1157.20180086

Previous Articles     Next Articles

Three-dimensional electrical capacitance tomography in rectangular spouted bed

SUN Yang, YANG Daoye, LIU Dazhen, FENG Wenxuan, GU Muyang   

  1. College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211816, Jiangsu, China
  • Received:2018-01-19 Revised:2018-03-08 Online:2018-08-05 Published:2018-03-14
  • Supported by:

    supported by the National Natural Science Foundation of China (51106070) and the Natural Science Foundation of the Jiangsu Higher Education Institutions (15KJB530005).

Abstract:

A 32-electrode electrical capacitance volume tomography (ECVT) system was designed to investigate the characteristics of particles flow in rectangular spouted bed. To calculate the sensitive field, the finite element simulation model was established. The sensor characteristics were simulated and analyzed. The accuracy of sensitive field was verified by imaging. By making scale solid model, the capacitance of electrode couples attached around the model was carried out by using the system. Linear back projection (LBP) algorithm was adopted to reconstruct the distribution of three-dimensional dielectric constant in the bed. The results indicated that the 32-electrode ECVT system can detect the regular movement of particles from static to circular in the spouted bed effectively, which provided another effective method for the research of motion characteristics of particles in the spouted bed.

Key words: ECVT, spouted bed, tomography, two-phase flow, sensitivity map, LBP algorithm, measurement

CLC Number: 

  • TB934

[1] 祝京旭, 洪江. 喷动床发展与现状[J]. 化学反应工程与工艺, 1997, 13(2):207-222. ZHU J X, HONG J. Development and current situation of spouted bed[J]. Chemical Reaction Engineering and Technology, 1997, 13(2):207-222.
[2] MARNASIDO K G, VOUTETAKIS S S, TJATJOPOULOS G J, et al. Catalytic partial oxidation of methane to synthesis gas in a pilot-plant-scale spouted-bed reactor[J]. Chemical Engineering Science, 1999, 54(15):3691-3699.
[3] ZHANG H, LIU M L, LI T J, et al. Experimental investigation on gas-solid hydrodynamics of coarse particles in a two-dimensional spouted bed[J]. Powder Technology, 2017, 307:175-183.
[4] ALTZIBAR H, ESTIATI I, LOPEZ G, et al. Fountain confined conical spouted beds[J]. Powder Technology, 2017, 312:334-346.
[5] 何玉荣, 陆慧林, 刘文铁, 等. 喷动床内气固两相流体动力行为的数值模拟[J]. 化工学报, 2004, 55(2):290-296. HE Y R, LU H L, LIU W T, et al. Numerical simulation of hydrodynamic behavior in spouted beds[J]. Journal of Chemical Industry and Engineering(China), 2004, 55(2):290-296.
[6] OLAZAR M, AGUADO R, BILBAO J, et al. Pyrolysis of sawdust in a conical spouted-bed reactor with a HZSM-5 catalyst[J]. AIChE Journal, 2000, 46(5):1025-1033.
[7] 李斌, 于洋, 马梦祥, 等. 三维喷动床内异径干湿颗粒混合特性数值模拟[J]. 化工学报, 2017, 68(12):4545-4555. LI B, YU Y, MA M X, et al. Numerical simulation of mixing different sized wet and dry particles in three-dimensional spouted bed[J]. CIESC Journal, 2017, 68(12):4545-4555.
[8] MLECZKO L, MARSCHALL K J. Performance of an internally circulating fluidized-bed reactor for the catalytic oxidative coupling of methane[J]. Canadian Journal of Chemical Engineering, 1997, 75(3):610-619.
[9] 金涌, 祝京旭, 汪展文, 等. 流态化工程原理[M]. 北京:清华大学出版社, 2000:10-14. JIN Y, ZHU J X, WANG Z W, et al. Principle of Fluidization Engineering[M]. Beijing:Tsinghua University Press, 2000:10-14.
[10] YANG S L, LUO K, FANG M M, et al. Influences of operating parameters on the hydrodynamics of a 3-D spout-fluid bed based on DEM modeling approach[J]. Chemical Engineering Journal, 2014, 247:161-173.
[11] SAIDI M, TABRIZI H B, GRACE J R, et al. Hydrodynamic investigation of gas-solid flow in rectangular spout-fluid bed using CFD-DEM modeling[J]. Powder Technology, 2015, 284:355-364.
[12] WEBER J M, MEI J S. Bubbling fluidized bed characterization using electrical capacitance volume tomography(ECVT)[J]. Powder Technology, 2013, 242:40-50.
[13] WEBER J M, LAYFIELD K J, ESSENDELFT D T V, et al. Fluid bed characterization using electrical capacitance volume tomography (ECVT), compared to CPFD software's barracuda[J]. Powder Technology, 2013, 250:138-146.
[14] WANG F, YU Z, MARASHDCH Q, et al. Horizontal gas and gas/solid jet penetration in a gas-solid fluidized bed[J]. Chemical Engineering Science, 2010, 65(11):3394-3408.
[15] 陈德运, 高明, 宋蕾, 等. 一种新型的三维ECT传感器及三维图像重建方法[J]. 仪器仪表学报, 2014, 35(5):961-968. CHEN D Y, GAO M, SONG L, et al. Novel 3D ECT sensor and its 3D image reconstruction method[J]. Chinese Journal of Scientific Instrument, 2014, 35(5):961-968.
[16] YANG W Q, PENG L H. Image reconstruction algorithms for electrical capacitance tomography[J]. Measurement Science and Technology, 2002, 14(1):R1-R13.
[17] LI N, CAO M C, HE C F, et al. Multi-parametric indicator design for ECT sensor optimization used in oil transmission[J]. IEEE Sensors Journal, 2017, 17(7):2074-2087.
[18] CHANDRASEKERA T C, LI Y, MOODY D, et al. Measurement of bubble sizes in fluidised beds using electrical capacitance tomography[J]. Chemical Engineering Science, 2015, 126:679-687.
[19] YANG S L, LUO K, FANG M M. Discrete element study of solid circulating and resident behaviors in an internally circulating fluidized bed[J]. Chemical Engineering Journal, 2014, 248:145-157.
[20] PENG L H, MERKUS H, SCARLETT B. Using regularization methods for image reconstruction of electrical capacitance tomography[J]. Particle and Particle Systems Characterization, 2000, 17(3):96-104.
[21] ABASCAL J F, ARRIDGE S R, ATKINSON D, et al. Use of anisotropic modelling in electrical impedance tomography:description of method and preliminary assessment of utility in imaging brain function in the adult human head[J]. NeuroImage, 2008, 43(2):258-268.
[22] 王化祥, 唐磊, 崔自强. 油/气两相流高速电容层析成像可视化系统电学层析成像[J]. 中国电机工程学报, 2009, 29(5):61-65. WANG H X, TANG L, CUI Z Q. A high-speed ECT visualization system for oil/gas two-phase flow[J]. Proceedings of the CSEE, 2009, 29(5):61-65.
[23] WANG A, MARASHDEH Q, MOTIL B J, et al. Electrical capacitance volume tomography for imaging of pulsating flows in a trickle bed[J]. Chemical Engineering Science, 2014, 119:77-87.
[24] LIAO A M, ZHOU Q Y, ZHANG Y. Application of 3D electrical capacitance tomography in probing anomalous blocks in water[J]. Journal of Applied Geophysics, 2015, 117:91-103.
[25] KIMOTO A, NAKATANI T, MATSUOKA Y, et al. Reconstruction of temperature patterns in the cylindrical head model from electrical capacitance tomography[J]. IEEE Transaction on Instrumentation and Measurement, 2005, 54(6):2407-2411.
[26] 李虎, 杨道业, 程明霄. 螺旋表面极板电容式传感器的灵敏场分析[J]. 化工学报, 2011, 62(8):2292-2297. LI H, YANG D Y, CHENG M X. Sensitivity analysis of capacitance sensor with helical shaped surface plates[J]. CIESC Journal, 2011, 62(8):2292-2297.
[27] YANG W Q, SPINK D M, YORK T A, et al. An image-reconstruction algorithm based on Landweber's iteration method for electrical capacitance tomography[J]. Measurement Science and Technology, 1999, 10(11):1065-1069.
[28] DYAKOWSKI T, EDWARDS R B, XIE C G, et al. Application of capacitance tomography[J]. Chemical Engineering Science, 1997, 52:2099-2110.
[29] WANG H G, QIU G Z, YE J M, et al. Experimental study and modelling on gas-solid flow in a lab-scale fluidised bed with Wurster tube[J]. Powder Technology, 2016, 300:14-27.
[30] DEB S, TAFTI D. Investigation of flat bottomed spouted bed with multiple jets using DEM-CFD framework[J]. Powder Technology, 2014, 254:387-402.

[1] XIA Hongtao, ZOU Siyu, XIAO Jie. Numerical simulation of shear-thinning droplet impacting on randomly rough surfaces [J]. CIESC Journal, 2019, 70(2): 634-645.
[2] GENG Chen, GUO Yajun, FENG Song, BI Qincheng. Density measurements of endothermic hydrocarbon fuel using random temperature signal cross-correlation [J]. CIESC Journal, 2019, 70(1): 24-31.
[3] XIE Yanqi, ZHU Kai, WANG Yabo. Effects of freezing conditions on cryopreservation of plant cells [J]. CIESC Journal, 2018, 69(S2): 200-204.
[4] SUN Zhichuan, LI Wei, YAN Xiaolong, MA Xiang, CHEN Wei, JIN Chunhua, WU Jie. Heat transfer and pressure drop characteristics inside stainless steel three-dimensional enhanced tubes [J]. CIESC Journal, 2018, 69(S2): 45-54.
[5] LIU Zhan, FENG Yuyang, LEI Gang, LI Yanzhong. Coupled thermal dynamic performance in cryogenic liquid oxygen tank under slosh excitation [J]. CIESC Journal, 2018, 69(S2): 61-67.
[6] CHEN Jingxiang, LI Wei, ZHU Hua, JIN Chunhua, DU Jincai, ZHANG Zhengjiang, LIU Li. Evaporation heat transfer performance of R410A inside 3-D double-enhanced tubes [J]. CIESC Journal, 2018, 69(S2): 76-81.
[7] TIAN Yajie, LIN Wensheng. Comparison of solutions of LNG heat exchangers used on LNG powered ships [J]. CIESC Journal, 2018, 69(S2): 141-146.
[8] XU Xiaoxiao, CHEN Long, XIAO Jiumin, LIU Chao. Experimental study on pressure drop characteristic of two-phase flow in reduced tee junction with flat tube [J]. CIESC Journal, 2018, 69(S2): 174-179.
[9] DU Dongxing, ZHANG Dan, LI Yingge, CHAO Kun, MA Lianxiang. Two dimensional numerical simulation of transient foam displacement process in homogeneous porous media [J]. CIESC Journal, 2018, 69(S1): 48-52.
[10] LI Bin, ZHANG Shangbin, ZHANG Lei, TENG Zhaoyu, WANG Youtian. Numerical simulation of bubble-particle flow in bubbling bed based on LBM-DEM [J]. CIESC Journal, 2018, 69(9): 3843-3850.
[11] LI Weihao, ZHANG Xiaosong. Experimental research on a new type of frost-free air source heat pump system [J]. CIESC Journal, 2018, 69(9): 3975-3982.
[12] ZHANG Ying, ZHANG Shi, HE Maogang. Determination of mutual diffusion coefficient for binary solution using digital holographic interferometry [J]. CIESC Journal, 2018, 69(9): 3774-3782.
[13] CHEN Zidan, LUO Huilong, LIU Jinchun, CAO Zhenguo, ZHAO Xinshuai, YANG Wubiao. Analysis of heating performance of CO2 air-source heat pump in cold region [J]. CIESC Journal, 2018, 69(9): 4030-4036.
[14] HE Denghui, CHEN Senlin, BAI Bofeng. New model for measuring stratified gas-liquid flow by Chisholm-model-based V-cone flowmeter [J]. CIESC Journal, 2018, 69(8): 3428-3435.
[15] HU Rentao, REN Libo, WANG Dewu, LIU Yan, ZHANG Shaofeng. Numerical simulation of fully developed liquid-solid flow in vertical narrow channel [J]. CIESC Journal, 2018, 69(8): 3408-3417.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!