CIESC Journal ›› 2018, Vol. 69 ›› Issue (7): 3226-3233.doi: 10.11949/j.issn.0438-1157.20171533

Previous Articles     Next Articles

Effect of exogenous H2 on biogas fermentation system

DENG Xiaoning, YE Yuanyuan, ZHOU Xinkai, CHENG Yu'e, LIN Chunmian   

  1. College of Environment, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
  • Received:2017-11-17 Revised:2018-01-18 Online:2018-07-05 Published:2018-01-29
  • Supported by:

    supported by the Sino-German Cooperation ProjectRobert Bosch Stiftung Foundation Fund-Funded Project (32.5.8003.0078.0).


The biogas fermentation was carried out in 30 L anaerobic stirred-tanks at 55℃ by using straw as substrate, in which the effect of exogenous H2 was particularly investigated. The results showed that the in-situ upgrading of biogas by means of introducing exogenous H2 was realized. At the stirring rate 100 r·min-1, the relative average volume of CH4 fraction increased from 69.6% to 94.4% while the relative average volume of CO2 fraction decreased from 30.4% to 5.6%. Compared with the bench-scale experiment without stirring, the utilization and conversion of the exogenous H2 increased from 91.0% to 93.1% and from 85.0% to 96.8%, respectively, at the stirring rate of 50 r·min-1. The introduction of exogenous H2 significantly promoted the degradation of propionic acid, butyric acid and isobutyric acid, which could effectively avoid the accumulation of volatile fatty acids in the fermentation process. At the same time, the strong agitation had an important influence on the decomposition of acetic acid and the consumption of CO2 in the biogas slurry. In addition, the introduction of exogenous H2 could change the proportion of the methanogenic microorganism in the fermentation system without obviously affecting the methanogenic microbial community.

Key words: exogenous hydrogen, anaerobic, fermentation, methane, carbon dioxide

CLC Number: 

  • X712

[1] PIRES J, SAINI V K, PINTO M L. Studies on selective adsorption of biogas components on pillared clays:approach for biogas improvement[J]. Environmental Science & Technology, 2008, 42(23):8727-8732.
[2] BAUER F, PERSSON T, HULTEBERG C, et al. Biogas upgradingtechnology overview, comparison and perspectives for the future[J]. Biofuels Bioproducts & Biorefining, 2013, 7(5):499-511.
[3] DENG L, HAGG M B. Techno-economic evaluation of biogas upgrading process using CO2 facilitated transport membrane[J]. International Journal of Greenhouse Gas Control, 2010, 4(4):638-646.
[4] 赵伟, 黄小美, 谭顺民. 沼气混入天然气管网使用的可行性探讨[J]. 煤气与热力, 2012, 32(12):8-11. ZHAO W, HUANG X M, TAN S M. Discussion on feasibility of injecting biogas into natural gas network[J]. GAs&HFAT, 2012, 32(12):8-11.
[5] 杨海燕, 李文哲, 高海云. 碳基吸附剂提纯CH4/CO2混合气中CH4的研究[J]. 农业机械学报, 2013, 44(5):154-157. YANG H Y, LI W Z, GAO H Y. Purification of CH4 from CH4/CO2 mixture using carbon-based adsorbents[J]. Transactions of the CSAE, 2013, 44(5):154-157.
[6] 田彩霞, 沈圆辉, 张东辉, 等. 真空变压吸附提纯沼气的实验[J]. 化工学报, 2018, 69(2):741-749. TIAN C X, SHEN Y H, ZHANG D H, et al. Biogas upgrading by vacuum pressure swing adsorption process[J]. CIESC Journal, 2018, 69(2):741-749.
[7] 汪昱昌, 江昊, 郝文川, 等. 通过外源氢气固定二氧化碳提纯沼气技术的研究进展[J]. 绿色科技, 2017, (6):149-152. WANG Y C, JIANG H, HAO W C, et al. Research progresses on biogas upgrading with carbon dioxide converted by external hydrogen[J]. Journal of Green Science and Technology, 2017, (6):149-152.
[8] GAUR A, PARK J W, JANG J H, et al. Precipitation of barium carbonate from alkanolamine solution-study of CO2 absorption from landfill gas(LFG)[J]. Journal of Chemical Technology & Biotechnology, 2015, 86(1):153-156.
[9] LANTELA J, RASI S, LEHTINEN J, et al. Landfill gas upgrading with pilot-scale water scrubber:performance assessment with absorption water recycling[J]. Applied Energy, 2012, 92(4):307-314.
[10] HARASIMOWICZ M, ORLUK P, ZAKRZEWSKATRZNADEL G, et al. Application of polyimide membranes for biogas purification and enrichment[J]. Journal of Hazardous Materials, 2007, 144(3):698-702.
[11] OSORIO F, TORRES J C. Biogas purification from anaerobic digestion in a waste-water treatment plant for biofuel production[J]. Renewable Energy, 2009, 34(10):2164-2171.
[12] LINDEBOOM R E, WEIJMA J, VAN LIER J B. High-calorific biogas production by selective CO2 retention at autogenerated biogas pressures up to 20 bar[J]. Environmental Science & Technology, 2012, 46(3):1895-1902.
[13] ANDRIANI D, WRESTA A, ATMAJA T D, et al. A review on optimization production and upgrading biogas through CO2, removal using various techniques[J]. Applied Biochemistry & Biotechnology, 2014, 172(4):1909-1928.
[14] 涂睿, 黎军, 王萌, 等. 利用外源氢气纯化升级沼气的研究进展[J]. 化工学报, 2014, 65(5):1587-1593. TU R, LI J, WANG M, et al. Research progress of biogas upgrading with external resource of hydrogen gas[J]. CIESC Journal, 2014, 65(5):1587-1593.
[15] LUO G ANGELIDAKI I. Hollow fiber membrane based H2 diffusion for efficient in situ biogas upgrading in an anaerobic reactor[J]. Applied Microbiology & Biotechnology, 2013, 97(8):3739-3744.
[16] HU Y S, HAO X D, ZHAO D, et al. Enhancing the CH4 yield of anaerobic digestion via endogenous CO2 fixation by exogenous H2[J]. Chemosphere, 2015, 140:34-39.
[17] LUO G, ANGELIDAKI I. Co-digestion of manure and whey for in situ biogas upgrading by the addition of H2:process performance and microbial insights[J]. Applied Microbiology & Biotechnology, 2013, 97(3):1373-1381.
[18] LUO G, JOHANSSON S, KANOKWAN B, et al. Simultaneous hydrogen utilization and in situ biogas upgrading in an anaerobic reactor[J]. Biotechnology & Bioengineering, 2012, 109(4):1088-1094.
[19] HAO X D, LIU R B, LOOSDRECHT M V, et al. Batch influences of exogenous hydrogen on both acidogenesis and methanogenesis of excess sludge[J]. Chemical Engineering Journal, 2017, 317:544-550.
[20] LIU R B, HAO X D, WEI J, Function of homoacetogenesis on the heterotrophic methane production with exogenous H2/CO2 involved[J]. Chemical Engineering Journal, 2016, 284:1196-1203.
[21] MULAT D G, MOSBæK F, WARD A J, et al. Exogenous addition of H2 for an in situ biogas upgrading through biological reduction of carbon dioxide into methane[J]. Waste Management, 2017, 68:146-156.
[22] 林春绵, 叶媛媛, 邓小宁, 等. 外源氢气连续导入沼气发酵系统原位合成甲烷的实验研究[J]. 高校化学工程学报, 2017, 31(4):892-897. LIN C M, YE Y Y, DENG X N, et al. In situ synthesis of CH4 in an anaerobic fermentation system by continuous introduction of exogenous H2[J]. Journal of Chemical Engineering of Chinese Universities, 2017, 31(4):892-897.
[23] CLESCERL L S. Standard Methods for the Examination of Water and Wastewater[M]. 20th ed. Washington DC:Amer. Public. Health Assn., 1998.
[24] WEILAND P. Biogas production:current state and perspectives[J]. Applied Microbiology & Biotechnology, 2010, 85(4):849-860.
[25] 林春绵, 俞游, 章祎玛, 等. 外源氢厌氧发酵原位合成甲烷的实验研究[J]. 浙江工业大学学报, 2015, 43(6):595-599. LIN C M, YU Y, ZHANG Y M, et al. Research on the in-situ synthesis of methane from exogenous hydrogen by anaerobic fermentation[J]. Journal of Zhejiang University of Technology, 2015, 43(6):595-599.
[26] BASSANI I, KOUGIAS P G, TREU L, et al. Biogas upgrading via hydrogenotrophic methanogenesis in two-stage continuous stirred tank reactors at mesophilic and thermophilic conditions[J]. Environmental Science & Technology, 2015, 49(20):12585-12593.
[27] 余亚琴, 吴义锋. 蓝藻厌氧发酵产沼气机械搅拌工艺优化及中试验证[J]. 农业工程学报, 2014, 30(22):253-259. YU Y Q, WU Y F. Optimization of mechanical stirring technology in anaerobic fermentation treating algae and pilot trial validation[J]. Transactions of the CSAR, 2014, 30(22):253-259.
[28] FUKUZAKI S, NISHIO N, SHOBAYASHI M, et al. Inhibition of the fermentation of propionate to methane by hydrogen, acetate, and propionate[J]. Applied & Environmental Microbiology, 1990, 56(3):719-723.
[29] YENIGUN O, DEMIREL B. Ammonia inhibition in anaerobic digestion:a review[J]. Process Biochemistry, 2013, 48(5/6):901-911.
[30] DIAZ I, PEREZ C, ALFARO N, et al. A feasibility study on the bioconversion of CO2 and H2 to biomethane by gas sparging through polymeric membranes[J]. Bioresource Technology, 2015, 185:246-253.
[31] LUO G, ANGELIDAKI I. Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture[J]. Biotechnology & Bioengineering, 2012, 109(11):2729-2736.
[32] 代莉蓉, 张文静, 刘来雁, 等.高温厌氧环境中一株嗜热产甲烷古菌的分离鉴定[J]. 中国沼气, 2011, 29(5):3-6. DAI L R, ZHANG W J, LIU L Y, et al. Isolation and identification of a methanogen from thermophilic anaerobic environment[J]. China Biogas, 2011, 29(5):3-6.
[33] ORENA A. The family methanotrichaceae[M]//ROSENBERG E, DE LONG E F, LORY S, et al. The Prokaryotes. Berlin Heidelberg:Springer, 2014:297-306.
[34] ROTARU A E, SHRESTHA P M, LIU F, et al. A new model for electron flow during anaerobic digestion:direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane[J]. Energy & Environmental Science, 2013, 7(1):408-415.
[35] YUN Y M, SUNG S, KANG S, et al. Enrichment of hydrogenotrophic methanogens by means of gas recycle and its application in biogas upgrading[J]. Energy, 2017, 135:294-302.
[36] 承磊, 郑珍珍, 王聪, 等. 产甲烷古菌研究进展[J]. 微生物学通报, 2016, 43(5):1143-1164. CHENG L, ZHENG Z Z, WANG C, et al. Recent advances in methanogens[J]. Microbiology China, 2016, 43(5):1143-1164.

[1] LIU Xiaofang, GUO Haiyan, ZHANG Shengnan, HUANG Liang. Influencing factors of denitrification of glycans and transformation characteristics of internal carbon sources [J]. CIESC Journal, 2019, 70(3): 1127-1134.
[2] ZHOU Xuebing, LIU Chanjuan, LUO Jinqiong, LIANG Deqing. Microscopic measurements on methane hydrate dissociation [J]. CIESC Journal, 2019, 70(3): 1042-1047.
[3] ZHU Shun, GUO Qi, ZHANG Dawei, YANG Qingchun. Conceptual design and system analysis coal to ethylene glycol process integrated with efficient utilization of CO2 [J]. CIESC Journal, 2019, 70(2): 772-779.
[4] MU Rui, LE Gaoyang, YANG Huizhong. Estimation method of dissolved gas quantity in COD determination based on O3/UV [J]. CIESC Journal, 2019, 70(2): 730-735.
[5] LI Jingyan, LIU Zhongliang, ZHOU Yu, LI Yanxia. Study of thermal-hydrologic-mechanical numerical simulation model on CO2 plume geothermal system [J]. CIESC Journal, 2019, 70(1): 72-82.
[6] WANG Yan, SHI Lei, FAN Jiaqi, CHEN Fei, YAO Jie, XU Guangwen. High-efficiency catalytic synthesis of polyoxymethoxy dimethylether from sulfolane-treated sulfonic acid resin [J]. CIESC Journal, 2019, 70(1): 116-127.
[7] LIU Zhongyan, SUN Dahan, JIN Xu, WANG Tianhao, MA Yitai. Evaluation research on boiling heat transfer model of CO2 in tube [J]. CIESC Journal, 2019, 70(1): 56-64.
[8] WANG Cailin, GU Shuaiwei, LI Yuxing, HU Qihui, TENG Lin, WANG Jinghan, MA Hongtao, ZHANG Datong. Experimental study on foaming characteristics of CO2-crude oil mixture [J]. CIESC Journal, 2019, 70(1): 251-260.
[9] XU Xiaoying, YOU Hao, WANG Wen. Numerical simulations of desublimation of CO2 or water vapor in liquid methane with cellular automata method [J]. CIESC Journal, 2018, 69(S2): 402-407.
[10] LUO Kai, WANG Jianhua, YU Junhuo, WENG Jun. Effect of methane concentration on diamond film in high power microwave plasma system [J]. CIESC Journal, 2018, 69(S2): 505-511.
[11] DU Dongxing, ZHENG Lichen, ZHANG Xu, SUN Guolong, LI Yingge, CHAO Kun. Comparative experimental studies on oil recovery characteristics of supercritical CO2 and foam fluid in porous media [J]. CIESC Journal, 2018, 69(S1): 58-63.
[12] CHEN Yufei, GENG Chengbao, CHU Hongyue, WANG Botao, GUO Hongyuan, YUE Chunyan. Micro-morphology and properties of modified MMT/PES-MBAE composite [J]. CIESC Journal, 2018, 69(S1): 148-154.
[13] ZHENG Ligang, WANG Yalei, YU Shuijun, ZHU Xiaochao, LI Gang, DU Depeng, DOU Zengguo. Coupled relationship between flame and overpressure of gas explosion inhibited by NaHCO3 [J]. CIESC Journal, 2018, 69(9): 4129-4136.
[14] JIA Xiaoxia, WANG Li, YUAN Ning, YANG Jiangfeng, LI Jinping. CH4/N2 adsorption separation research of MOFs with divalent Cr/Mo/Ni unsaturated metal sites [J]. CIESC Journal, 2018, 69(9): 3896-3904.
[15] HE Kaiwu, TANG Siyang, LIU Changjun, YUE Hairong, LIANG Bin. Performance of amine functionalized mesoporous adsorbents for CO2 adsorption [J]. CIESC Journal, 2018, 69(9): 3887-3895.
Full text



No Suggested Reading articles found!