CIESC Journal ›› 2016, Vol. 67 ›› Issue (5): 2022-2032.doi: 10.11949/j.issn.0438-1157.20151502

Previous Articles     Next Articles

Electrochemical continuous separation of oxygen from air (Ⅰ): Optimum of single cell performances

ZHU Xiaobing, ZHANG Jianhui, LI Xiaosong, LIU Jinglin, LIU Jianhao, JIN Can   

  1. Center for Hydrogen Energy and Liquid Fuels, Laboratory of Plasma Physical Chemistry, Dalian University of Technology, Dalian 116024, Liaoning, China
  • Received:2015-09-28 Revised:2015-12-24 Online:2016-05-05 Published:2016-01-20
  • Supported by:

    supported by the National Natural Science Foundation of China (11175036) and the Fundamental Research Funds for the Central Universities (DUT14RC(3)012).


With rapid development of industrial processes, in particular more recently influenced by “Haze”, air quality draws more and more attentions. A refill of oxygen in air is one of crucial solutions to improve air quality. In contrast to conventional technologies for oxygen production (i.e. physical separation of air, chemical reactions, water electrolysis), the innovative technology of electrochemical continuous separation of oxygen from air features separation of pure oxygen from air, high efficiency, continuous operation, environment friendly, silent operation, ease of scale up and applicability to indoor or outdoor fields. This technology involves two crucial components of polymer electrolyte fuel cells and solid polymer electrolyte water electrolysis (abbreviated as fuel cell and electrolyzer). In this article, the effect of operation conditions on single cell performance such as operation temperature, reactant gases utilization ratios, relative humidity and pressure, etc. for fuel cell was investigated, as well as the ways of water supply (at anode and/or cathode), water flow rate and operation temperature, etc. for electrolyzer. In terms of fuel cell, the polarization curve was measured, the electrochemical impedance spectra were conducted and the ionic conductivity and activation energy of Nafion® membrane were calculated. Polarization curve was fitted to obtain intrinsic parameters including Tafel slope, exchange current density of oxygen reduction reaction (i0) and m, n, related to mass transfer etc. It showed that the optimum of fuel cell was under conditions of ambient pressure, 60℃ of operation temperature, 0.42 W·cm-2 of peak power density, 77 mohm·cm2 of cell areal resistance (membrane) and 41.4 mS·cm-1 of ionic conductivity. The Tafel slope slightly varied with temperature, ca. 120 mV·dec-1, but was influenced by the relative humidity. The relative humidity remarkably affected the fuel cell performances. In electrolyzer, the optimum was under conditions of 65℃ of operation temperature, 1.08 ohm·cm2 of cell areal resistance and 11.7 mS·cm-1 of ionic conductivity. The effect of water flow rate on performance was negligible. The ways of water supply follow an order of both anode and cathode≈anode>cathode. Under above conditions, activation energies of Nafion®211 and Nafion®115 membranes were calculated as 3.75 and 4.61 kJ·mol-1, respectively. Based on the optimum of single cell performances of fuel cell and electrolyzer, in this article, the preliminary experimental data were provided for the subsequent implementation of scale up of cell stack system for oxygen production.

Key words: oxygen production, polymer electrolyte fuel cells, solid polymer electrolyte water electrolysis, electrochemistry, separation, optimization

CLC Number: 

  • O646

[1] 张兴侯. 医院用氧气的新途径 [J]. 制冷, 2003, 22 (1): 54-58. DOI: 10.3969/j.issn.1005-9180.2003.01.014. ZHANG X H. A new way of using oxygen in hospital [J]. Refrigeration, 2003, 22 (1): 54-58. DOI: 10.3969/j.issn.1005-9180.2003.01.014.
[2] SHI M, KIM J, SAWADA J A, et al. Production of argon free oxygen by adsorptive air separation on Ag-ETS-10 [J]. AIChE Journal, 2013, 59 (3): 982-987.
[3] SANTOS J, CRUZ P, REGALA T, et al. High-purity oxygen production by pressure swing adsorption [J]. Industrial and Engineering Chemistry Research, 2007, 46 (2): 591-599.
[4] 田津津, 张玉文, 王锐. 变压吸附制氧技术的发展和应用 [J]. 深冷技术, 2005, (6): 7-10. DOI: 10.3969/j.issn.978-7-807.2005.06.002. TIAN J J, ZHANG Y W, WANG R. Advances in pressure -swing-adsorption oxygen manufacture technology and its application [J]. Cryogenic Technology, 2005, (6): 7-10. DOI: 10.3969/j.issn.978-7-807.2005.06.002.
[5] 覃安安, 张素云. 制氧技术的发展现状 [J]. 洁净与空调技术, 2009, (2): 32-37. DOI: 10.3969/j.issn.1005-3298.2009. 02.009. QIN A A, ZHANG S Y. The status of development of oxygen-making technology [J]. Contamination Control & Air-conditioning Technology, 2009, (2): 32-37. DOI: 10.3969/j.issn.1005-3298.2009. 02.009.
[6] 张华民, 朱晓兵, 杨辉, 等. 一种固体聚合物电解质水电解用膜电极的制备方法: CN101008087B[P]. 2010-08-04. ZHANG H M, ZHU X B, YANG H, et al. A preparation method of membrane electrode assembly for SPE water electrolysis: CN101008087B [P]. 2010-08-04.
[7] 杨辉. SPE水电解用Nafion/PTFE复合膜和CCM的制备及工艺优化 [D]. 大连: 辽宁师范大学, 2006. YANG H. The preparation and process optimization of Nafion/PTFE composite membrane and CCM used in water electrolysis [D]. Dalian: Liaoning Normal University, 2006.
[8] 朱晓兵. 高性能多孔聚四氟乙烯增强复合质子交换膜合成及燃料电池性能研究[D]. 大连: 中国科学院大连化学物理研究所, 2006. ZHU X B. Synthesis of high performance polytetrafluoroethylene(PTFE)-reinforced composite proton conductive membranes and their performance studies for polymer electrolyte fuel cells[D]. Dalian: Dalian Institute of Chemical Physics, 2006.
[9] ZHU X B, ZHANG H M, ZHANG Y, et al. An ultrathin self-humidifying membrane for PEM fuel cell application: fabrication, characterization, and experimental analysis [J]. Journal of Physical Chemistry B, 2006, 110 (29): 14240-14248.
[10] 朱晓兵, 张华民, 张宇, 等. 常压氢空自增湿燃料电池用复合质子交换膜 [J]. 电源技术, 2007, 31 (4):291-295. DOI: 10.3969/j.issn.1002-087X.2007.04.011. ZHU X B, ZHANG H M, ZHANG Y, et al. A multilayer PTFE-reinforced self-humidifying membrane for fuel cell with dry H2/air under ambient pressure [J]. Chinese Journal of Power Sources, 2007, 31 (4): 291-295. DOI: 10.3969/j.issn.1002-087X.2007.04.011.
[11] 朱晓兵, 朱纬坤, 朱爱民, 等. 一种由含氧混合气制备纯氧及贫氧气体的电化学方法: CN104611717A[P]. 2015-05-13. ZHU X B, ZHU W K, ZHU A M, et al. An electrochemical method for the preparation of pure oxygen and the oxygen-lean gas from the oxygen-containing gas mixture: CN104611717A[P]. 2015-05-13.
[12] STEELE B C, HEINZEL A. Materials for fuel-cell technologies [J]. Nature, 2001, 414 (6861): 345-352.
[13] 马建新, 衣宝廉, 俞红梅, 等. PEMFC膜电极组件(MEA)制备方法的评述 [J]. 化学进展, 2004, 16 (5): 804-812. DOI: 10.3321/j.issn: 1005-281X.2004.05.017. MA J X, YI B L, YU H M, et al. Review on preparation method of membrane electrode assembly (MEA) for PEMFC [J]. Progress in Chemistry, 2004, 16 (5): 804-812. DOI: 10.3321/j.issn:1005-281X.2004.05.017.
[14] SONG C, TANG Y, ZHANG J L, et al. PEM fuel cell reaction kinetics in the temperature range of 23–120°C [J]. Electrochimica Acta, 2007, 52 (7): 2552–2561.
[15] 魏子栋, 李莉, 李兰兰, 等. 氧电极催化材料的研究现状 [J]. 电源技术, 2004, 28 (2): 116-120. DOI: 10.3969/j.issn.1002-087X.2004.02.015. WEI Z D, LI L, LI L L, et al. State-of-art electrocatalysts for oxygen electrode [J]. Chinese Journal of Power Sources, 2004, 28 (2): 116-120. DOI: 10.3969/j.issn.1002-087X. 2004.02.015.
[16] TANAKA Y, UCHINASHI S, SAIHARA Y, et al. Dissolution of hydrogen and the ratio of the dissolved hydrogen content to the produced hydrogen in electrolyzed water using SPE water electrolyzer [J]. Electrochimica Acta, 2003, 48 (3): 4013-4019.
[17] RASTEN E, HAGEN G, TUNOLD R. Electrocatalysis in water electrolysis with solid polymer electrolyte [J]. Electrochimica Acta, 2003, 48 (25): 3945-3952.
[18] 张扬健. SPE电解池和再生燃料电池膜电极研究[D]. 北京: 清华大学, 2007. ZHANG Y J. Studies on the MEA of SPE water electrolyzer and regenerative fuel cell[D]. Beijing: Tsinghua University, 2007.
[19] 马霄平, 宋世栋, 谭忠印, 等. 固体聚合物电解质水电解池电极的优化研究 [J]. 电源技术, 2006, 30 (8): 621-624, 640. DOI: 10.3969/j.issn.1002-087X.2006.08.005. MA X P, SONG S D, TAN Z Y, et al. Optimization of membrane electrodes for SPE water electrolysis [J]. Chinese Journal of Power Sources, 2006, 30 (8): 621-624, 640. DOI: 10.3969/j.issn.1002-087X.2006.08.005.
[20] 杨辉, 朱晓兵, 谭忠印, 等. 不同厚度PTFE增强复合膜的SPE水电解性能 [J]. 电源技术, 2007, 31 (1): 53-56. DOI: 10.3969/j.issn.1002-087X.2007.01.016. YANG H, ZHU X B, TAN Z Y, et al. Study on SPE water electrolysis performance of Nafion/PTFE composite membrane with different thickness [J]. Chinese Journal of Power Source, 2007, 31 (1): 53-56. DOI: 10.3969/j.issn.1002-087X. 2007.01.016.
[21] ZHU X B, ZHU W K, ZHU A M, et al. An electrochemical method for the preparation of pure oxygen and the oxygen-lean gas from the oxygen-containing gas mixture: PCT/CN2014/090252[P]. 2014-11-04.
[22] 谌冠卿. 一种制氧装置: CN1461824[P]. 2003-12-17. SHEN G Q. A device of making oxygen: CN1461824[P]. 2003-12-17.
[23] 庞文明, 李星光, 顾军, 等. 一种便携式水电解制氧机: CN102191511A[P]. 2011-09-21. PANG W M, LI X G, GU J, et al. A portable water electrolysis oxygen generator: CN102191511A[P]. 2011-09-21.
[24] PERON J, MANI A, ZHAO X, et al. Properties of Nafion® NR-211 membranes for PEMFCs [J]. Journal of Membrane Science, 2010, 356 (1): 44–51.
[25] LARMINIE J, DICKS A. Fuel Cell Systems Explained[M]. 2nd ed. Chichester: John Wiley & Sons Inc., 2003: 25-63.
[26] BERNARDI D M, VERBRUGGE M W. A mathematical model of the solid-polymer-electrolyte fuel cell [J]. Journal of the Electrochemical Society, 1992, 139 (9): 2477-2491.
[27] 衣宝廉. 燃料电池——原理·技术·应用 [M]. 北京: 化学工业出版社,2003: 234-245. YI B L. Fuel Cell—Principle, Technology, Application[M]. Beijing: Chemical Industry Press, 2003: 234-245.
[28] 黄镇江. 燃料电池及其应用 [M]. 北京: 电子工业出版社, 2005: 95-113. HUANG Z J. Fuel Cell and Application [M]. Beijing: Publishing House of Electronics Industry, 2005: 95-113.
[29] GASTEIGER H A, KOCHA S S, SOMPALLI B, et al. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs [J]. Applied Catalysis B Environmental, 2005, 56 (1/2): 9-35.
[30] DOYLE M, RAJENDRAN G. Handbook of Fuel Cells—Fundamentals, Technology and Applications [M]. New York: John Wiley & Sons Inc., 2010: 23-26.
[31] SONE Y, EKDUNGE P, SIMONSSON D. Proton conductivity of Nafion®117 as measured by a four-electrode AC impedance method [J]. Journal of the Electrochemical Society, 1996, 143 (4): 1254-1259.
[32] 葛善海, 衣宝廉, 徐洪峰. 质子交换膜燃料电池水传递模型 [J].化工学报, 1999, 50 (1): 39-48. GE S H, YI B L, XU H F. Proton exchange membrane fuel cell water transfer model [J]. Journal of Chemical Industry and Engineering (China), 1999, 50 (1): 39-48.
[33] 张亚, 王兆斌, 周华. 相对湿度对质子交换膜燃料电池性能影响的模型研究 [J].化工学报, 2008, 59 (9): 2302-2308. ZHANG Y, WANG Z B, ZHOU H. Influence of operating relative humidity on PEMFC with computational model [J]. Journal of Chemical Industry and Engineering (China), 2008, 59 (9): 2302-2308.

[1] DENG Weifeng, JIANG Zhenhua, LIU Shaoshuai, ZHANG Ankuo, WU Yinong. Optimization design and experimental properties of high-temperature and high-capacity pulse tube cooler [J]. CIESC Journal, 2019, 70(1): 107-115.
[2] XIONG Pan, YAN Shuguang, LIU Weiyin. Structure optimization of cyclone based on response surface method [J]. CIESC Journal, 2019, 70(1): 154-160.
[3] ZHANG Li, WANG Wenwu, ZHANG Zhi'en, LIU Peisheng, WEN Jiangbo, DONG Liang. A waste heat recovery power generation system combined with natural gas liquefaction and CO2 capture [J]. CIESC Journal, 2019, 70(1): 261-270.
[4] WANG Channa, LIU Ling, WANG Huihua, QU Tianpeng, TIAN Jun, WANG Deyong, KANG Zhenhui. Controllable preparation of Co-Fe-Pd nanoparticles and their catalytic activities toward oxygen reduction [J]. CIESC Journal, 2019, 70(1): 319-326.
[5] WANG Cailin, GU Shuaiwei, LI Yuxing, HU Qihui, TENG Lin, WANG Jinghan, MA Hongtao, ZHANG Datong. Experimental study on foaming characteristics of CO2-crude oil mixture [J]. CIESC Journal, 2019, 70(1): 251-260.
[6] WANG Zizong, LIU Hongqian, WANG Jiming. Research and optimization of separation technology of methanol to propylene [J]. CIESC Journal, 2019, 70(1): 136-145.
[7] DING Jiao, YIN Yaoqi, BAI Yaohui, ZHOU Xiangyang, LIU Qihai, YIN Guoqiang. Fabrication and performance of NiO-BZCYYb anode-supported solid oxide fuel cells (SOFCs) by in-situ dip coating technique [J]. CIESC Journal, 2018, 69(S1): 136-142.
[8] HOU Zhenzhong, PENG Longgui, LI Ying, LU Hai, LU Ya, XIE Xiaoqin. Interfacial self-assembly synthesis and electrochemical capacitance of hierarchical porous polypyrrole films [J]. CIESC Journal, 2018, 69(9): 4121-4128.
[9] YAO Yingying, GUO Li, HU Zhongqiu, QUAN Qu, DU Dongyun. Separation of copper and arsenic in copper smelting dust by Na2S-NaOH leaching assisted with ultrasound method [J]. CIESC Journal, 2018, 69(9): 3983-3992.
[10] GAO Xuejin, HUANG Mengdan, QI Yongsheng, WANG Pu. Batch process monitoring using multiphase AR-PCA optimized with PDPSO [J]. CIESC Journal, 2018, 69(9): 3914-3923.
[11] NIU Peifeng, WANG Xiaofei, LIU Nan, WANG Yuanning, CHANG Lingfang, ZHANG Xianchen. Modeling method of ASOS-ELM and its application in prediction of heat rate of steam turbine [J]. CIESC Journal, 2018, 69(9): 3924-3931.
[12] YANG Shujun, WEI Yucong, WOO Meng Wai, WU Winston Duo, CHEN Xiao Dong, Xiao Jie. Numerical simulation of mono-disperse droplet spray dryer under influence of swirling flow [J]. CIESC Journal, 2018, 69(9): 3814-3824.
[13] SONG Dihui, AN Luyang, ZHANG Litao, ZHANG Yafeng, XU Xinwei, WANG Yunan, WEI Huangzhao. Optimization of electrochemical coupling system process for coking waste water pretreatment by response surface method [J]. CIESC Journal, 2018, 69(9): 4001-4011.
[14] WANG Rui, XU Yanxia, SONG Xingfu, XU Zhigang, YU Jianguo. Falling film crystallization kinetics of paraxylene [J]. CIESC Journal, 2018, 69(8): 3460-3468.
[15] HU Mingtao, JU Pengfei, ZHAO Xuhui, TANG Yuming, ZUO Yu. Effects of different accelerated tests on failure process of epoxy/polyurethane coating [J]. CIESC Journal, 2018, 69(8): 3548-3556.
Full text



No Suggested Reading articles found!