CIESC Journal ›› 2016, Vol. 67 ›› Issue (5): 2015-2021.doi: 10.11949/j.issn.0438-1157.20151432

Previous Articles     Next Articles

Kinetic modelling of porcine insulin precursor (PIP) expressed by multi-copy recombinant Pichia pastoris

CHEN Li1,2, WANG Yue2, GUO Meijin2, CHU Ju2, ZHUANG Yingping2   

  1. 1 National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China;
    2 Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
  • Received:2015-09-10 Revised:2015-11-19 Online:2016-05-05 Published:2015-11-23
  • Supported by:

    supported by the Special Fund for Agro-scientific Research in the Public Interest(201303046), the National High Technology Research and Development Program of China (2012AA021201), and the Open Project Program of State Key Laboratory of Bioreactor Engineering (2060204).


Kinetic modelling of recombinant Pichia pastoris harboring multiple porcine insulin precursor (PIP) gene dosages was studied when the cells were grown in the fed-batch culture. The key parameters of this kinetics were estimated, including specific cell growth rate (h-1), PIP production rate (g·g-1·h-1) and substrate consumption rate (g·g-1·h-1) with nonlinear curve fit by Origin8.0. The results showed that both growth-associated production coefficient ( ) and growth-associated metabolism coefficient (k1) increased with increasing copy numbers. The expression level of PIP reached the highest at the copy number of 12. These results suggested that rapid growth and lower metabolic burden of a high copy number effectively improved the production rate of target proteins. Furthermore, the predicted values based on the established kinetic model were in good agreement with the experimental data, indicating that the kinetic model could be used to describe recombinant PIP production process in fed-batch fermentation mode.

Key words: recombinant Pichia pastoris, porcine insulin precursor expression, gene dosage, kinetic model

CLC Number: 

  • TQ464.7

[1] SHIN C S, HONG M S, BAE C S, et al. Enhanced production of human mini-proinsulin in fed-batch cultures at high cell density of Escherichia coli BL21(DE3)[pET-3aT2M2] [J]. Biotechnology Progress, 1997, 13 (3): 249-257.
[2] THIM L, HANSEN M T, NORRIS K, et al. Secretion and processing of insulin precursors in yeast [J]. Proceedings of the National Academy of Sciences of the United States of America, 1986, 83 (18): 6766-6770.
[3] DALY R, HEARN M T. Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production [J]. J. Mol. Recognit., 2005, 18 (2): 119-138.
[4] CREGG J M. Pichiaprotocols [M]. Totowa, N.J.: Humana Press, 2007:1-10.
[5] AHMAD M, HIRZ M, PICHLER H, et al. Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production [J]. Applied Microbiology and Biotechnology, 2014, 98 (12): 5301-5317.
[6] WANG Y, LIANG Z H, ZHANG Y S, et al. Human insulin from a precursor overexpressed in the methylotrophic yeast Pichia pastoris and a simple procedure for purifying the expression product [J]. Biotechnol. Bioeng., 2001, 73 (1): 74-79.
[7] MACAULEY-PATRICK S, FAZENDA M L, MCNEIL B, et al. Heterologous protein production using the Pichia pastoris expression system [J]. Yeast, 2005, 22 (4): 249-270.
[8] 郭美锦, 朱泰承, 张明,等.重组毕赤酵母甲醇利用表型与基因拷贝数对外源基因表达的影响 [J]. 中国生物工程杂志, 2007, 27 (7): 7-11 GUO M J, ZHU T C, ZHANG M, et al. Influences of methanol utilization phenotype and gene dosage on heterologous protein expression in recombinant Pichia pastoris [J]. China Biotechnology, 2007, 27 (7): 7-11.
[9] 王燕, 梁镇和, 冯佑民,等. 人胰岛素在甲醇酵母Pichia pastoris中的分泌表达 [J]. 生物化学与生物物理学报,1999, 31 (5): 587-589. WANG Y, LIANG Z H, FENG Y M, et al. Secretory expression of human insulin in Methylotrophic yeast Pichia pastoris [J]. Acta Biochimica et Biophysica Sinica, 1999, 31 (5): 587-589.
[10] 姚钰舜, 储炬, 杭海峰, 等. 培养条件对重组毕赤酵母高密度表达猪胰岛素前体的影响 [J]. 华东理工大学学报,2006, 32 (4): 397-401. YAO Y X, CHU J, HANG H F, et al. Culture conditions affecting high level expression of Porcine Insulin Precursor(PIP)by recombinant Pichia pastoris in high cell density fermentation [J]. Journal of East China University of Science and Technology, 2006, 32 (4): 397-401.
[11] ZHU T C, HANG H F, CHU J, et al. Transcriptional investigation of the effect of mixed feeding to identify the main cellular stresses on recombinant Pichia pastoris [J]. Journal of Industrial Microbiology and Biotechnology, 2013, 40 (2): 183-189.
[12] 陈文, 郭美锦, 储炬, 等.重组毕赤酵母表达猪胰岛素前体代谢参数分析和动力学模型 [J]. 华东理工大学学报, 2005, 31 (3): 300-304. CHEN W, GUO M J, CHU J, et al. Metabolic data association analysis and modeling for recombinant Porcine Insulin Precursor expression in genetically engineered Pichia pastoris [J]. East China University of Science and Technology, 2005, 31 (3): 300-304.
[13] HANG H F, CHEN W, GUO M J, et al. A simple unstructured model-based control for efficient expression of recombinant porcine insulin precursor by Pichia pastoris [J]. Korean J. Chem. Eng., 2008, 25 (5): 1065-1069.
[14] MENDOZA MUNOZ D F, ALGECIRA ENCISO N A, CORDOBA RUIZ H, et al. A simple structured model for recombinant IDShr protein production in Pichia pastoris [J]. Biotechnol. Lett., 2008, 30 (10): 1727-1734.
[15] ZHU T C, GUO M J, TANG Z Y, et al. Efficient generation of multi-copy strains for optimizing secretory expression of porcine insulin precursor in yeast Pichia pastoris [J]. Journal of Applied Microbiology, 2009, 107 (3): 954-963.
[16] 郭美锦, 吴康华, 杭海峰, 等. 基因工程菌Pichia pastoris高密度培养条件研究 [J]. 微生物学通报, 2001, 28 (3): 6-11. GUO M J, WU K H, HANG H F, et al. Studies on conditions of cell high density cultivation for genetically engineered methylotrophic Pichia pastoris [J]. Microbiology, 2001, 28 (3): 6-11.
[17] 丰强强, 潘玉霖, 成宝琨, 等. 2-KGA混菌发酵大小菌耦合关系研究及建模 [J].化工学报, 2013, 64 (7): 2520-2525. FENG Q Q, PAN Y L,CHENG B K, et al. Modeling on interaction of different strains in 2-KGA mixed culture fermentation [J]. CIESC Journal, 2013, 64 (7): 2520-2525.
[18] GADEN E L. Fermentation process kinetics [J]. J. Biochem. Microhiol. Technol., 1959, 1 (4): 413-429.
[19] ZHANG W H, HYWOOD POTTER K J, PLANTZ B A, et al. Pichia pastoris fermentation with mixed-feeds of glycerol and methanol: growth kinetics and production improvement [J]. J. Ind. Microbiol. Biotechnol., 2003, 30 (4): 210-215.
[20] PAIS J M, VARAS L, VALDS J, et al. Modeling of mini-proinsulin production in Pichia pastoris using the AOX promoter [J]. Biotechnol. Lett., 2003, 25 (3): 251-255.

[1] DING Jiong, CHEN Qi, XU Qiyue, YANG Suijun, YE Shuliang. ARC thermal inertia correction method based on C80 data merging [J]. CIESC Journal, 2019, 70(1): 417-424.
[2] LI Yannan, CHENG Jun, LIU Jianzhong, ZHOU Junhu, CEN Kefa. CO2removal from biohythane by absorption in ionic liquid[P66614][Triz]loaded on molecular sieve SBA-15 [J]. CIESC Journal, 2018, 69(6): 2526-2532.
[3] XU Yufei, QIAN Feng, YANG Minglei, DU Wenli, ZHONG Weimin. Improved whale optimization algorithm and its application in optimization of residue hydrogenation parameters [J]. CIESC Journal, 2018, 69(3): 891-899.
[4] LUO Ruihan, CHEN Juan, WANG Qi. Kinetic model optimization of n-butane isomerization by improved biogeography optimization algorithm [J]. CIESC Journal, 2018, 69(3): 1158-1166.
[5] ZHANG Jian, HUANG Bangyin, SUI Zhijun, ZHOU Xinggui, YUAN Weikang. Microkinetic analysis of acetylene hydrogenation over Pd-Ag/Al2O3 catalyst with different Pd/Ag ratios [J]. CIESC Journal, 2018, 69(2): 674-681.
[6] DING Zhaoyang, HAN Zhiyang, SHI Wenrong, SHEN Yuanhui, TIAN Caixia, HAN Yangyuan, ZHANG Donghui. Analysis of dynamic effective mass transfer coefficients of rapid pressure swing adsorption process for oxygen production [J]. CIESC Journal, 2018, 69(2): 759-768.
[7] LIU Chunwei, FENG Li, FENG Yina. Electrolytic preparation of sodium hypochlorite in undivided cell and its stability [J]. CIESC Journal, 2018, 69(12): 5246-5255.
[8] YANG Ze, HU Dongdong, LIU Tao, CAO Kun, ZHAO Ling. Non-isothermal curing kinetics of polyurethane under high-pressure gas atmosphere [J]. CIESC Journal, 2018, 69(11): 4728-4736.
[9] DONG Jian, ZHANG Shenglu, SUN Weizhen, XU Zhimei, ZHAO Ling. Liquid-phase oxidation kinetics of sec-butylbenzene [J]. CIESC Journal, 2018, 69(11): 4737-4745.
[10] LIU Xi, ZHUANG Kunyu, HUANG Cheng, LI Xuelai. Non-isothermal crystallization kinetics of dynamic ice slurry production by vacuum method [J]. CIESC Journal, 2017, 68(8): 3071-3081.
[11] AN Guoliang, WANG Liwei, ZHOU Zhisong, JIANG Long, WANG Ruzhu. Non-equilibrium sorption kinetic models of SrCl2 and its application for refrigeration [J]. CIESC Journal, 2017, 68(6): 2483-2490.
[12] FANG Huiying, WANG Duanli, CHEN Hao, WANG Yayi. Kinetic modeling of nano-zero valent iron (NZVI) on sludge anaerobic digestion [J]. CIESC Journal, 2017, 68(5): 2042-2048.
[13] YAN Hao, LIU Yibin, FENG Xiang, YANG Chaohe, SHAN Honghong. Molecular kinetic model for catalytic cracking of waste oil by structure-oriented lumping [J]. CIESC Journal, 2017, 68(4): 1407-1414.
[14] RONG Guangjian, ZHANG Youhong, CHEN Yan, CHEN Jie, HUANG Meng, ZHOU Feng. Carbon source analysis, mutagenesis and kinetics of Serratia marcescens producing prodigiosin [J]. CIESC Journal, 2017, 68(1): 244-255.
[15] HU Lingyu, YAN Zhaoqing, LI Mingfu, JIN Ye, CUI Fulin, QIN Rui, LUO Lianxin. Mulberry SCMP pulp adsorption characteristic and action mechanism of anionic groups [J]. CIESC Journal, 2017, 68(1): 320-328.
Full text



No Suggested Reading articles found!