CIESC Journal ›› 2018, Vol. 69 ›› Issue (S2): 17-25.doi: 10.11949/j.issn.0438-1157.20181262

Previous Articles     Next Articles

Application of phase change materials in automobile energy saving

ZHANG Liang, SHI Zhongke   

  1. School of Automation, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, China
  • Received:2018-10-25 Revised:2018-11-02


At present, the automobile has become an indispensable transportation tool of work and life. At the same time the automobile also becomes the main source of environmental pollution. To save the energy, reduce the environmental pollution and realize sustainable development, the research of new energy vehicles has become the main trend and a basic policy of world's automobile production and usage. Temperature control of power battery is one of the key technologies of electric vehicle. The temperature control technology and thermal properties of PCM used in lithium batteries have been studied by scholars to solve the temperature instability and improve the safety performance of lithium batteries in new energy vehicles. By adding compounds such as metal, graphite and cellulose, the heat transfer performance of the battery had been improved. The mathematical equation of heat conduction established by computer simulation provides a theoretical basis for the application of PCM in lithium battery. In addition, the applications of PCM in energy recovery of vehicle exhaust and indoor temperature control are the research direction of vehicle energy saving. These process of indoor temperature control by PCM can be active or passive. This not only reduces the pollution during automobile operation, but also saves energy and enhances the safety of automobiles. Meanwhile, it keeps the temperature constant during the process of move and stop, and then the passengers will be more comfortable.

CLC Number: 

  • TQ021.3

[1] ORÓ E, GRACIA A D, CASTELL A, et al.Review on phase change materials (PCMs) for cold thermal energy storage applications[J].Applied Energy, 2012, 99:513-533.
[2] TELKES M.Thermal storage for solar heating and cooling[C]//Proceedings of the Workshop on Solar Energy Storage Subsystems for the Heating and Cooling of Buildings.Charlottesville, Virginia, 1975.
[3] 叶为标.热泵相变储能换热器强化传热数值模拟和实验研究[D].广州:华南理工大学, 2012. YE W B.Enhanced heat transfer numerical simulation and experimental research on phase change thermal energy storage heat exchanger of heat pump[D].Guangzhou:South China University of Technology, 2012.
[4] 吴淑英.纳米复合蓄热材料强化相变传热实验与数值模拟研究[D].广州:华南理工大学, 2010. WU S Y.Enhanced heat transfer experimental and simulation research of nanocomposite phase change materials[D].Guangzhou:South China University of Technology, 2010.
[5] DU K, JOHN C, WANG Z H, et al.A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges[J].Applied Energy, 2018, 220:242-273.
[6] JOSE P D C, PHILIP E.Thermal energy storage for low and medium temperature applications using phase change materials-a review[J].Applied Energy, 2016, 177:227-238.
[7] 崔艳琦.相变控温调湿建筑复合材料的研究进展[J].化工学报, 2018, 69(S1):1-7. CUI Y Q.Research on development of composite phase change humidity-control material in buildings[J].CIESC Journal, 2018, 69(S1):1-7.
[8] SHARMA A, TYAGI V V, CHEN C R, et al.Review on thermal energy storage with phase change materials and applications[J].Renewable and Sustainable Energy Reviews, 2009, 13(2):318-345.
[9] SAFFARI M, GRACIA A D, USHAK S, et al.Passive cooling of buildings with phase change materials using whole-building energy simulation tools:a review[J].Renewable and Sustainable Energy Reviews, 2017, 80:1239-1255.
[10] 崔艳琦.相变材料热性能及其在室内被动式储能系统的简易计算[J].储能科学与技术, 2017, 6(2):302-306. CUI Y Q.Thermal properties of phase change materials (PCM) and their concise calculations for passive storage[J].Energy Storage Science and Technology, 2017, 6(2):302-306.
[11] 张亮, 史忠科.相变材料(PCM)储能器在自动控温系统的应用[J].计算机与应用化学, 2017, 34(7):528-532. ZHANG L, SHI Z K.Review on energy storage systems with PCM for temperature control[J].Computers and Applied Chemistry, 2017, 34(7):528-532.
[12] OICA.Production statistics and sales statistics[EB/OL].[2018-4-1].
[13] 房丛丛, 钱焕群.相变蓄热技术及其应用[J].节能, 2011, 30(Z2):27-30+4. FANG C C, QIAN H Q.Research and application of thermal storage with phase change materials[J].Energy Conservation, 2011, 30(Z2):27-30+4.
[14] 胡阳, 宣卫红, 黄冬辉.相变材料在建筑节能中的应用研究[J].工业安全与环保, 2017, 43(12):82-85.
HU Y, XUAN W H, HUANG D H.Research and application of phase change materials in building energy saving[J].Industrial Safety and Environmental Protection, 2017, 43(12):82-85.
[15] 李志生, 张姝婷.相变材料的研究进展与应用综述[J].建筑节能, 2016, 44(4):57-60+107.
LI Z S, ZHANG S T.Research progress and application of phase change materials[J].Building Energy Efficiency, 2016, 44(4):57-60+107.
[16] 杨玖林, 杨春光.相变储能技术在冷藏车中的应用[J].交通节能与环保, 2018, 14(3):8-10.
YANG J L, YANG C G.Application of phase change energy storage in refrigerated trucks[J].Energy Conservation and Environmental Protection in Transportation, 2018, 14(3):8-10.
[17] 刘佳佳.相变蓄热器性能与强化传热研究[D].北京:华北电力大学, 2017.
LIU J J.Performance and heat transfer enhancement of a latent heat thermal energy storage system[D].Beijing:North China Electric Power University, 2017.
[18] MEHLING H.Heat and cold storage with PCM[M]//CABEZA L F.Heat and Mass Transfer.Berlin:Springer, 2018:137-179.
[19] KAMKARI B, SHOKOUHMAND H, BRUNO F.Experimental investigation of the effect of inclination angle on convection-driven melting of phase change material in a rectangular enclosure[J].International Journal of Heat and Mass Transfer, 2014, 72:186-200.
[20] ESEN M, DURMU? A, DURMU? A.Geometric design of solar-aided latent heat store depending on various parameters and phase change materials[J].Solar Energy, 1998, 62(1):19-28.
[21] 张亮, 史忠科.被动式汽车相变材料储能器的实验分析[J].化工学报, 2018, 69(S1):176-181. ZHANG L, SHI Z K.Experimental exploration of passive energy storage device with phase change materials for vehicle[J].CIESC Journal, 2018, 69(S1):176-181.
[22] CUI Y Q.Investigation of phase change material passive cooling system for buildings[D].Nottingham:University of Nottingham, 2014.
[23] REGIN A F, SOLANKI S C, SAINI J S.Latent heat thermal energy storage using cylindrical capsule:numerical and experimental investigations[J].Renewable Energy, 2006, 31(13):2025-2041
[24] 陈亮, 刘道平, 杨亮.相变储能过程传热强化技术研究进展[J].化工进展, 2017, 36(S1):291-296.
CHEN L, LIU D P, YANG L.Progress of heat transfer enhancement technology in phase change energy storage process[J].Chemical Industry and Engineering Progress, 2017, 36(S1):291-296.
[25] 崔艳琦, 龚方方, 张燕妮, 等.相变材料(PCM)在建筑节能中的应用研究进展[J].新型建筑材料, 2016, 43(8):26-29.
CUI Y Q, GONG F F, ZHANG Y N, et al.Development of study on the applications of phase change material (PCM) for energy saving in building[J].New Building Materials, 2016, 43(8):26-29.
[26] 付学友.相变蓄热装置传热特性及优化研究[D].北京:北方工业大学, 2018. FU X Y.Research on heat transfer characteristics and optimization of phase change heat storage device[D].Beijing:North China University of Technology, 2018
[27] LI Z Y, FU X Y, PAN D, et al.Research on thermal storage perfor-mance of solar phase change thermal storage integrated device[J].Procedia Engineering, 2017, 205:1357-1363.
[28] 杨天润, 孙锲, WENNERSTEN R, 等.相变蓄冷材料的研究进展[J].工程热物理学报, 2018, 39(3):567-573. YANG T R, SUN Q, WENNERSTEN R, et al.Review of phase change materials for cold thermal energy storage[J].Journal of Engineering Thermophysics, 2018, 39(3):567-573.
[29] KHODADADI J M, HOSSEINIZADEH S F.Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage[J].International Communications in Heat and Mass Transfer, 2007, 34(5):534-543.
[30] EFTEKHAR J, HAJI-SHEIKH A, LOU D Y S.Heat transfer enhancement in a paraffin wax thermal storage system[J].Journal of Solar Energy Engineering, 1984, 106(3):299-306.
[31] WU S Y, ZHU D S, ZHANG, X R, et al.Preparation and melting/freezing characteristics of Cu/paraffin nanofluid as phase-change material (PCM)[J].Energy & Fuels, 2010, 24(3):1894-1898
[32] RANJBAR A A, KASHANI S, HOSSEINIZADEH S F, et al.Nu-merical heat transfer studies of a latent heat storage system containing nano-enhanced phase change material[J].Thermal Science, 2011, 15(1):169-181.
[33] HOSSEINIZADEH S F, DARZI A A R, TAN F L.Numerical investigations of unconstrained melting of nano-enhanced phase change material (NEPCM) inside a spherical container[J].Inter-national Journal of Thermal Sciences, 2012, 51:77-83
[34] EV-Volumes.Global plug-in vehicle sales for 2017-final results[EB/OL].[2018-4-1].
[35] Xevcar.2016 Research on China's new energy vehicle market[EB/OL].[2018-4-1].
[36] WANG H T, HE F, MA L.Experimental and modeling study of controller-based thermal management of battery modules under dynamic loads[J].International Journal of Heat and Mass Transfer, 2016, 103:154-164.
[37] WANG T, TSENG K J, ZHAO J Y, et al.Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies[J].Applied Energy, 2014, 134:229-238.
[38] HE F, WANG H T, MA L.Experimental demonstration of active thermal control of a battery module consisting of multiple Li-ion cells[J].International Journal of Heat and Mass Transfer, 2015, 91:630-639.
[39] AL-HALLAJ S, SELMAN J R.A novel thermal management system for electric vehicle batteries using phase-change material[J].Journal of the Electrochemical Society, 2000, 147:3231-3236.
[40] DUAN X, NATERER G F.Heat transfer in phase change materials for thermal management of electric vehicle battery modules[J], International Journal of Heat and Mass Transfer, 2010, 53(23/24):5176-5182.
[41] CHIBA R.A series solution for heat conduction problem with phase change in a finite slab[J].Abstract and Applied Analysis, 2014, 2014:684293.
[42] KIZILEL R, SABBAH R, SELMAN J R, et al.An alternative cooling system to enhance the safety of Li-ion battery packs[J].Journal of Power Sources, 2009, 194(2):1105-1112.
[43] QU Z G, LI W Q, WANG J L, et al.Passive thermal management using metal foam saturated with phase change material in a heat sink[J].International Communications in Heat and Mass Transfer, 2012, 39(10):1546-1549.
[44] QU Z G, LI W Q, TAO W Q.Numerical model of the passive thermal management system for high-power lithium ion battery by using porous metal foam saturated with phase change material[J].International Journal of Hydrogen Energy, 2014, 39(8):3904-3913.
[45] ZHAO R, ZHANG S J, GU J J, et al.An experimental study of lithium ion battery thermal management using flexible hydrogel films[J].Journal of Power Sources, 2014, 255:29-36.
[46] ZHANG S J, ZHAO R, LIU J, et al.Investigation on a hydrogel based passive thermal management system for lithium ion batteries[J].Energy, 2014, 68:854-861.
[47] SCHWEITZER B, WILKE S, KHATEEB S, et al.Experimental validation of a 0-D numerical model for phase change thermal mana-gement systems in lithium-ion batteries[J].Journal of Power Sources, 2015, 287:211-219.
[48] WU W X, YANG X Q, ZHANG G Q, et al.An experimental study of thermal management system using copper mesh-enhanced composite phase change materials for power battery pack[J].Energy, 2016, 113:909-916.
[49] LIN C J, XU S C, CHANG G F, et al.Experiment and simulation of a LiFePO4 battery pack with a passive thermal management system using composite phase change material and graphite sheets[J].Journal of Power Sources, 2015, 275:742-749.
[50] WANG Z C, ZHANG Z Q, JIA L, et al.Paraffin and paraffin/aluminum foam composite phase change material heat storage experi-mental study based on thermal management of Li-ion battery[J].App-lied Thermal Engineering, 2015, 78:428-436.
[51] ALIPANAH M, LI X L.Numerical studies of lithium-ion battery thermal management systems using phase change materials and metal foams[J].International Journal of Heat and Mass Transfer, 2016, 102:1159-1168.
[52] FATHABADI H.High thermal performance lithium-ion battery pack including hybrid active-passive thermal management system for using in hybrid/electric vehicles[J].Energy, 2014, 70:529-538.
[53] LING Z Y, WANG F X, FANG X M, et al.A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling[J].Applied Energy, 2015, 148:403-409.
[54] 刘扬娟.轿车空调压缩机的选型探讨[J].压缩机技术, 1990, (2):37-42.
LIU Y J.Discussion on selection of car air conditioning compressor[J].Compressor Technology, 1990, (2):37-42.
[55] SCHATZ O.Cold start improvement with a heat store:SAE technical paper 910305[R].1991.
[56] Webasto Group.Truck bunk cooling systems:bluecool[EB/OL].[2018-4-1].
[57] AllCell Technologies.Thermal energy storage[EB/OL].[2018-4-1].
[58] KORIN E, RESHEF R, TSHERNICHOVESKY D, et al.Improving cold-start functioning of catalytic converters by using phase-change materials:SAE technical paper 980671[R].1998.
[59] TENG H, REGNER G, COWLAND C.Waste heat recovery of heavy-duty diesel engines by organic Rankine cycle (Ⅰ):Hybrid energy system of diesel and Rankine engines:SAE technical paper 2007-01-0537[R].2007.
[60] GUMUS M.Reducing cold-start emission from internal combustion engines by means of thermal energy storage system[J].Applied Thermal Engineering, 2009, 29(4):652-660.
[61] RINGLER J, SEIFERT M, GUYOTOT V, et al.Rankine cycle for waste heat recovery of IC engines[J].SAE Int.J.Engines, 2009, 2(1):67-76.
[62] 秦朝葵, 杨志.一种使用发动机余热的新型客车采暖系统[J].柴油机, 2004, (5):41-43.
QIN C K, YANG Z.A novel heating system for coach making use of waste heat[J].Diesel Engine, 2004, (5):41-43.
[63] 杨启容, 杨娟, 刘大维.回收发动机余热的球内对称凝固过程参数分析[J].农业机械学报, 2006, (3):27-30.
YANG Q R, YANG J, LIU D W.Parameter analysis of freezing in spheres for the recovering of waste heat of engine[J].Transactions of the Chinese Society for Agricultural Machinery, 2006, (3):27-30.
[64] 高青, 王永珍, 王国华, 等.基于车辆余热蓄能利用的作用特性分析[J].热科学与技术, 2008, 7(4):314-319.
GAO Q, WANG Y Z, WANG G H, et al.Characteristics of thermal energy storage on automobile waste heat for vehicle heating[J].Journal of Thermal Science and Technology, 2008, 7(4):314-319.
[65] 杨肖虎, 李杨, 张联英, 等.一种相变储能的电动公交车辐射空调系统:106143048A[P].2016-11-23.
YANG X H, LI Y, ZHANG L Y, et al.A radiant air conditioning system for electric buses based on energy storage via phase change:106143048A[P].2016-11-23.
[66] 郭燕雯, 黄婷婷, 张凡, 等.基于相变蓄热的回质型吸附制冷空调系统:103912946A[P].2014-07-09.
GUO Y W, HUANG T T, ZHANG F, et al.A regenerative adsorption air conditioning system based on phase change heat storage:103912946A[P].2014-07-09.
[67] 黄婷婷, 郭燕雯, 张志伟, 等.一种汽车余热驱动的固体吸附空调系统:103940143A[P].2014-07-23.
HUANG T T, GUO Y W, ZHANG Z W, et al.A solid adsorption air conditioning system driven by automobile waste heat:103940143A[P].2014-07-23.
[68] WANG F Q, MAIDMENT G, MISSENDEN J, et al.The novel use of phase change materials in refrigeration plant (2):Dynamic simulation model for the combined system[J].Applied Thermal Engineering, 2007, 27(17/18):2902-2910.
[69] APACI Pty Ltd.Application of PCM materials and products[EB/OL].[2018-4-1].
[70] Sofrigam.Gel packs used to maintain cold temperatures[EB/OL].[2018-4-1].
[71] TAN H B, LI Y Z, TUO H F, et al.Experimental study on liquid/solid phase change for cold energy storage of liquefied natural gas (LNG) refrigerated vehicle[J].Energy, 2010, 35(5):1927-1935.

[1] YU Yingying, TANG Jinchen, HU Xuegong. Theoretical analysis of wetting characteristics in rectangular microgrooves under electric field [J]. CIESC Journal, 2018, 69(10): 4216-4223.
[2] GE Ming, ZHAO Lijie, DAI Weibao, CAI Pei, SHU Shaoxin, YANG Hairui, LÜ Junfu. Heat transfer of staggered three-dimensional externally finned tube [J]. CIESC Journal, 2017, 68(10): 3733-3738.
[3] PAN Yangmin, LUO Yiqing, WANG Liwen, YUAN Xigang. Numerical simulations on sheet region of spray cooling process of pressure-swirl nozzle [J]. CIESC Journal, 2017, 68(2): 575-583.
[4] WEI Qing, YAO Xiuying, ZHANG Yongmin. CPFD simulation on heat transfer mechanism of vertical tube in bubbling fluidized bed [J]. CIESC Journal, 2016, 67(5): 1732-1740.
[5] WANG Cuihua, ZHAO Baozeng, GONG Bin, KOU Liping, WU Jianhua. Effects of temperature-dependent viscosity on turbulent flow and heat transfer in jackets with triangular helical ducts [J]. CIESC Journal, 2015, 66(12): 4758-4766.
[6] WU Si, LI Tingxian, YAN Ting, DAI Yanjun, WANG Ruzhu. Preparation and thermal properties of high performance shape-stabilized phase change composites using stearic acid and expanded graphite [J]. CIESC Journal, 2015, 66(12): 5127-5134.
[7] XU Bin, SHI Yumei. Investigation on heat transfer characteristics during flow boiling of liquid natural gas in vertical micro-fin tube [J]. CIESC Journal, 2015, 66(S2): 66-75.
[8] LIU Yingshu, JIA Yanxiang, SUN Shufeng, SONG Weixin. Analysis on heat transfer process with temperature control by module type ice storage within confined space [J]. CIESC Journal, 2014, 65(6): 2085-2091.
[9] QIU Yongjun, ZHU Xun, WANG Hong, LIAO Qiang. Three-dimensional simulation of solidification and heat transfer for air-cooling molten blast furnace slag droplet [J]. CIESC Journal, 2014, 65(S1): 340-345.
[10] CHEN Dongsheng, SHI Yumei. Flow boiling heat transfer of LNG in vertical smooth tube at 0.5 Mpa [J]. CIESC Journal, 2014, 65(4): 1199-1207.
[11] HU Xiaodong, GAO Xuenong, LI Delun, CHEN Siting. Performance of paraffin/expanded graphite composite phase change materials [J]. CIESC Journal, 2013, 64(10): 3831-3837.
[12] Luo Xiaoping(Department of Industrial Equipment and Control Engineering , South China University of Technology, Guangzhou 510641)Deng Xianhe and Deng Songjiu( Research Institute of Chemical Engineering, South China University of Technology, Guangzhou 5106. RESEARCH ON FLOW RESISTANCE OF RING SUPPORT HEAT EXCHANGER WITH LONGITUDINAL FLUID FLOW ON SHELL SIDE [J]. , 1999, 50(1): 130-135.
[13] Zhang Libin, Li Xiulun, Zhang Jinzhong and Lin Ruitai ( Chemical Engineering School, Tianjin University, Tianjin 300072). HEAT TRANSFER IN VAPOR - LIQUID - SOLID THREE - PHASE CIRCULATING FLUIDIZED BED [J]. , 1999, 50(2): 208-215.
[14] Zhu Dongsheng , Wang Lijun and Tan Yingke (Research Institute of Chemical Engineering, South China University of Technology, Guangzhou 510641). INVESTIGATION ON ENHANCEMENT THERMAL CONDUCTIVITY OF ADSORBENT BY USING POLYMERIZATION [J]. , 1999, 50(2): 235-241.
[15] Wang Jinliang(Institute of Engineering Thermaphysics, Chinese Academy of Sciences , Beijing 100080). ANALYSIS OF EVAPORATION HEAT TRANSFER IN CAPILLARY TUBES [J]. , 1999, 50(4): 435-442.
Full text



No Suggested Reading articles found!