CIESC Journal ›› 2014, Vol. 65 ›› Issue (S1): 340-345.doi: 10.3969/j.issn.0438-1157.2014.z1.055

Previous Articles     Next Articles

Three-dimensional simulation of solidification and heat transfer for air-cooling molten blast furnace slag droplet

QIU Yongjun1,2, ZHU Xun1,2, WANG Hong1,2, LIAO Qiang1,2   

  1. 1. Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400030, China;
    2. Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030, China
  • Received:2014-02-24 Revised:2014-03-04 Online:2014-05-30 Published:2014-02-28
  • Supported by:

    supported by the National Basic Research Program of China (2012CB720403).

Abstract: Solidification and heat transfer of an air-cooling molten blast furnace slag droplet is numerically simulated by the volume of fluid (VOF) method coupling with the solidification/melting model. The effects of droplet diameter and air velocity are investigated on the dynamic solidification evolution and heat transfer of the slag droplet, respectively. The results show that it is available for the air-cooling technique to realize fast solidification of the molten slag droplet surface, while non-uniform solidification evolution is found to occur inside the slag droplet. The solidification process of the molten slag droplet is expedited with decreasing droplet diameter and increasing air velocity due to the enhancement in the heat transfer. The optimum slag droplet diameter and air velocity should be comprehensively determined for a practical heat recovery system. As for a droplet with diameter of 0.5-2 mm at initial temperature of 1673.15 K, it releases the heat of solidification within 2 s under air velocity of 1-5 m·s-1, and the highest air outflow temperature as a result can reach above 900 K.

Key words: blast furnace slag droplet, air-cooling, temperature field, phase interface, numerical simulation, model

CLC Number: 

  • TQ021.3
[1] Cai Jiuju(蔡九菊). The energy and resources saving technologies employed in Chinese iron and steel industry and their development [J]. World Iron & Steel(世界钢铁), 2009, 4: 1-13
[2] Yan Zhaomin(闫兆民), Zhou Yangmin(周扬民), Yang Zhiyuan(杨志远), Yi Chuijie(仪垂杰). Present situation and development trend of blast furnace slag comprehensive utilization [J]. Research on Iron and Steel(钢铁研究),2010, 38(2) :53-56
[3] Xu Yongtong(徐永通), Ding Yi(丁毅),Cai Zhangping(蔡漳平),Liu Qing(刘青),Huang Ye(黄晔), Ye Shufeng (叶树峰). Development of heat recovery from blast furnace slag using dry granulation methods[J]. China Metallurgy(中国冶金),2007, 17(9):1-8
[4] Wang Jianjun(王建军), Cai Jiuju(蔡九菊), Chen Chunxia(陈春霞), Li Guangshuang(李广双), Zhang Qi(张琦). Report on residual heat and energy in Chinese steel industry [J]. Industrial Heating(工业加热), 2007, 2:1-3
[5] Purwanto H, Mizuochi T, Akiyama T. Prediction of granulated slag properties produced from spinning disk atomizer by mathematical model [J]. Mater. Trans., 2005, 46 (6): 1324
[6] Guo Jianxiang, Yang Baojin. Research on the air-cooled waste heat recovery for furnace slag//Materials for Renewable Energy & Environment[C]. 2011: 1148 - 1152
[7] Xing Hongwei(邢宏伟), Wang Xiaodi(王晓娣), Long Yue(龙跃), Zhang Yuzhu(张玉柱). Numerical simulating for phase-change heat transfer process of slag granule [J]. Iron Steel Vanadium Titanium(钢铁钒钛), 2010, 31(1): 79- 83
[8] Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39: 201-225
[9] Ubbink O, Issa R I. A method for capturing sharp fluid interfaces on arbitrary meshes[J]. Journal of Computational Physics, 1999,153 (1): 26-50
[10] Liang Chao(梁超), Wang Hong(王宏), Zhu Xun(朱恂), Chen Rong(陈蓉), Ding Yudong(丁玉栋), Liao Qiang(廖强). Numerical simulation of droplet impact on surfaces with different wettabilities[J]. CIESC Journal(化工学报),2013, 64(8) : 2745- 2751
[11] Tian Dewen(田德文), Wang Chunqing(王春青), Tian Yanhong(田艳红). Effect of solidification on solder bump formation in solder jet process: simulation and experiment[J].Transactions of Nonferrous Metals Society of China(中国有色金属学报:英文版),2008, 18(5): 1201-1208
[12] Nagata K R, Goto K S. Heat conductivity and mean free path of phonons in metallurgical slags//Fine H A, Gaskell D R. Proceedings of 2nd International Symposium on Metallurgical Slags and Fluxes[C]. Warrendale: Metallurgical Society of AIME,1984: 875-889
[13] Kashiwaya Y, In-Nami Y, Akiyama T. Development of a rotary cylinder atomizing method of slag for the production of amorphous slag particles//ISIJ International 2010[C].2010:1245-1251
[1] ZHANG Zhigang, ZHANG Debiao, ZHANG Qinqin, ZHANG Tao, YANG Ru, LI Wenxiu. Screening of ionic liquids for separation of ethyl acetate-acetonitrile azeotrope based on COSMO-RS [J]. CIESC Journal, 2019, 70(1): 146-153.
[2] DENG Weifeng, JIANG Zhenhua, LIU Shaoshuai, ZHANG Ankuo, WU Yinong. Optimization design and experimental properties of high-temperature and high-capacity pulse tube cooler [J]. CIESC Journal, 2019, 70(1): 107-115.
[3] XIONG Pan, YAN Shuguang, LIU Weiyin. Structure optimization of cyclone based on response surface method [J]. CIESC Journal, 2019, 70(1): 154-160.
[4] DING Jiong, CHEN Qi, XU Qiyue, YANG Suijun, YE Shuliang. ARC thermal inertia correction method based on C80 data merging [J]. CIESC Journal, 2019, 70(1): 417-424.
[5] LI Jingyan, LIU Zhongliang, ZHOU Yu, LI Yanxia. Study of thermal-hydrologic-mechanical numerical simulation model on CO2 plume geothermal system [J]. CIESC Journal, 2019, 70(1): 72-82.
[6] BO Lin, SUN Baozhi, GAN Yiran, DING Hongda, SHI Jianxin. Simulation of heat transfer performance of once-through steam generator under primary side disturbance [J]. CIESC Journal, 2018, 69(S1): 64-71.
[7] HU Peiyu, WANG Shugang, SONG Shuanglin, JIANG Shuang, LIANG Yuntao. Medial axis extraction method of pore structure based on fully parallel thinning algorithm [J]. CIESC Journal, 2018, 69(S1): 26-33.
[8] SUN Xing, XU Keke, MENG Hua. Supercritical-pressure heat transfer of n-decane with fuel pyrolysis in helical tube [J]. CIESC Journal, 2018, 69(S1): 20-25.
[9] WANG Dongxiang, LING Xiang, CUI Zhengwei, YU Jianfeng. Ligament breakup characteristics of high viscous non-Newtonian thin liquid film in centrifugal atomization process [J]. CIESC Journal, 2018, 69(9): 3799-3805.
[10] YANG Shujun, WEI Yucong, WOO Meng Wai, WU Winston Duo, CHEN Xiao Dong, Xiao Jie. Numerical simulation of mono-disperse droplet spray dryer under influence of swirling flow [J]. CIESC Journal, 2018, 69(9): 3814-3824.
[11] LI Bin, ZHANG Shangbin, ZHANG Lei, TENG Zhaoyu, WANG Youtian. Numerical simulation of bubble-particle flow in bubbling bed based on LBM-DEM [J]. CIESC Journal, 2018, 69(9): 3843-3850.
[12] ZHONG Yingjie, HUANG Qi, DENG Kai, ZHAO Chuangyao, SU Yihua. Analysis of flow characteristics in triangular grooved channel by pulsating flow at low Reynolds number [J]. CIESC Journal, 2018, 69(9): 3806-3813.
[13] LI Yajuan, ZHAO Chuanqi, YANG Yuesuo, WANG Yuanyuan, SONG Xiaoming. Mechanism and model of dynamic adsorption of glyphosate contaminated water on graphene-based iron oxide composite [J]. CIESC Journal, 2018, 69(9): 3944-3953.
[14] NIU Peifeng, WANG Xiaofei, LIU Nan, WANG Yuanning, CHANG Lingfang, ZHANG Xianchen. Modeling method of ASOS-ELM and its application in prediction of heat rate of steam turbine [J]. CIESC Journal, 2018, 69(9): 3924-3931.
[15] YANG Qing, YANG Yubing, LI Jianmin, FENG Hongli, ZHOU Xueyang, LIU Xiuhong. Partial nitrification coupled anaerobic ammonia oxidation process to treat low C/N domestic sewage [J]. CIESC Journal, 2018, 69(8): 3635-3642.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!