CIESC Journal

Previous Articles     Next Articles

Effect of temperature on methanogens metabolic pathway and structures of predominant bacteria

WU Meirong1,2, ZHANG Rui1,2, ZHOU Jun1,2, XIE Xinxin1,2, YONG Xiaoyu1,2, YAN Zhiying3, GE Mingmin1,2, ZHENG Tao1,2   

  1. 1 School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China;
    2 Bioenergy Research Institute, Nanjing Tech University, Nanjing 211816, Jiangsu, China;
    3 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
  • Received:2014-01-02 Revised:2014-02-09 Online:2014-05-05 Published:2014-02-26
  • Supported by:

    supported by the National Basic Research Program of China (2013CB733504), the National Natural Science Foundation of China (21307058, 21207065), the Jiangsu Agricultural Independent Innovation Project (CX(13)3045) and the Chinese Academy of Environmental and Application of Microbial Key Laboratory Fund Project (KLCAS-2013-05).

Abstract: Methanogens are strictly anaerobic archaea, which not only take part in the methanogenesis procedure but also limit this process. Temperature plays a key role in the anaerobic fermentation. Temperature could not only directly alter the community structure and function of methanogenic archaea,but also affect the supply of substrates for methanogens,which in turn indirectly regulates the pathways of methanogenic archaea.There are three pathway for methanogenesis, and they are started from acetic acid, H2/CO2 and C-1 compound respetively. Acetoclastic methanogenesis accounts for about two-thirds of the total methane production globally, while hydrogenotrophic methanogenesis accounts for about one third. Methanol- and methyl amine-derived methanogensis is restricted in ocean and saline water. Acetoclastic methanogenesis is the predominant methanogenesis at a low temperature, and methane is produced by acetoclastic and hydrogenotrophic methanogenesis at a medium temperature, while methane is exclusively produced by hydrogenotrophic methanogenesis at a high or ultra-high temperature.

Key words: methane, bioenergy, metabolism, methanogens, temperature, acetoclastic methanogenesis, hydrogenotrophic methanogenesis

CLC Number: 

  • Q939.9
[1] Liu Chang(刘畅), Lu Xiaohua(陆小华). Carbon reduction pattern in China: comparison of CCS and biomethane route [J]. CIESC Journal (化工学报), 2012, 61(1):7-10
[2] Gong Weijia(公维佳), Li Wenzhe(李文哲), Liu Jianyu(刘建禹). Progress of research on methanogens bacteria inanaerobic digestion [J]. Journal of Northeast Agricultural University(东北农业大学学报), 2006, 37(6): 838-841
[3] Shan Liwei(单丽伟), Feng Guiying(冯贵颖), Fan Sanhong(范三红). Process in Genome and Methanogenesis of Methanogens[J]. Journal of Microbiology(微生物学杂志), 2003, 23(6): 42-46
[4] Oremland R S, Marsh L, Des Marais D J. Methanogenesis in Big Soda Lake, Nevada: an alkaline, moderately hypersaline desert lake[J]. Appl. Environ. Microb., 1982,43: 462-468
[5] Conrad R. Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments [J]. FEMS Microbiology Ecology, 1999, 28(3): 193-202
[6] Karakashev D, Batstone D J, Trably E, et al. Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of methanosaetaceae [J]. Applied and Environmental Microbiology, 2006, 72(7): 5138-5141
[7] Conrad R. Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal [J]. Organic Geochemistry, 2005, 36(5): 739-752
[8] Avery G B, Shannon R D, White J R, et al.Controls on methane production in a tidal freshwater estuary and a peatland: methane production via acetate fermentation and CO2 reduction [J]. Biogeochemistry, 2003, 62:19-37
[9] Zuo Jiane, Xing Wei. Department of environmental science and engineering[J]. Chin. J. Appl. Ecol., 2007, 18(9): 2127- 2132
[10] Akila G, Chandra T S. Performance of an UASB reactor treating synthetic wastewater at low temperature using cold adapted seed slurry [J]. Process Biochemisty, 2007, 42: 466-471
[11] Jiang Na(蒋娜), Chen Zijuan(陈紫娟), Dong Xiuzhu(东秀珠). Methanogenic archaea and their mediated methanogenic pathways in cold wetland [J]. Microbiol. China(微生物学通报), 2013, 40(1): 146-157
[12] Chin K J, Conrad R. Intermediary metabolism in methanogenic paddy soil and the influence of temperature[J]. FEMS Microbiology Ecology, 1995, 18(2): 85-102
[13] Kotsyurbenko O R, Nozhevnikova A N, Zavarzin G A. Methanogenic degradation of organic matter by anaerobic bacteria at low temperature[J]. Chemosphere, 1993, 27(9): 1745-1761
[14] Kotsyurbenko O R, Nozhevnikova A N, Soloviova T I, et al. Methanogenesis at low temperatures by microflora of tundra wetland soil [J]. Antonie van Leeuwenhoek, 1996, 69(1): 75-86
[15] Zhang D D, Zhu W B, Tang C, Suo Y L, Gao L J, Yuan X F, Wang X F, Cui Z J. Bioreactor performance and methanogenic population dynamics in a low-temperature(5—18℃)anaerobic fixed-bed reactor[J]. Bioresource Technology, 2012, 104: 136-143
[16] Großkopf R, Janssen P H, Liesack W. Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval[J]. Applied and Environmental Microbiology, 1998, 64(3): 960-969
[17] Conrad R. Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments [J]. FEMS Microbiology Ecology, 2006, 28: 193-202
[18] Calli B, Mertoglu B, Roest K, et al. Comparison of long-term performances and final microbial compositions of anaerobic reactors treating landfill leachate [J]. Bioresource Technology, 2006, 97(4): 641-647
[19] Fey A, Claus P, Conrad R. Temporal change of 13C-isotope signatures and methanogenic pathways in rice field soil incubated anoxically at different temperatures [J]. Geochimica et Cosmochimica Acta, 2004, 68(2): 293-306
[20] Conrad R, Klose M, Noll M. Functional and structural response of the methanogenic microbial community in rice field soil to temperature change[J]. Environ. Microbiol., 2009, 11: 1844-1853
[21] Wu X L, Friedrich M W, Conrad R. Diversity and ubiquity of thermophilic methanogenic archaea in temperate anoxic soils [J]. Environ. Microbiol., 2006, 8: 394-404
[22] Qu Xian(瞿贤), He Pinjing(何品晶). Effect of temperature on methanogenic pathway during household waste anaerobic digestion by stable carbon isotopic signature of CH4 [J]. Environmental Science(环境科学), 2008, 29(11) : 3252-3257
[23] Lu Y, Conrad R. In situ stable isotope probing of methanogenic archaea in the rice rhizosphere [J]. Science, 2005, 309: 1088-1090
[24] Ahring B K, rahim A A, adenovska Z. Effect of temperature increase from 55℃ to 65℃ on performance and microbial population dynamics of an anaerobic reactor treating cattle manure [J].Water Research, 2001, 35: 2446-2452
[25] Wang Changwen(王长文), Pu Guibing(蒲贵兵), Lü Bo(吕波), He Dong(何东), Yin Hongjun(尹洪军). Study on approaches to reduce hydrogen partial pressure during anaerobic digestion of sewage sludge [J]. Chemistry & Bioengineering(化学与生物工程), 2010, 27(4): 79-82
[26] Burggraf S, Fricke H, Neuner A, Kristjansson J, Rouvier P, Mandelco L, Woese C R, Stetter K O. Methanococcus igneus sp. nov.,a novel hyperthermophilic methanogen from a shallow submarine hydrothermal system[J]. Syst. Appl. Microbiol., 1990, 13: 263-269
[27] Fiala G, Stetter K O. Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100℃[J]. Arch. Microbiol, 1986, 145: 56-61
[28] Takai K, et al. Cell proliferation at 122℃ and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation[J]. Proc. Natl. Acad. Sci. USA, 2008, 105: 10949-10954
[29] Liu Haichang(刘海昌), Lan Guihong(兰贵红). Isolation and identification of a methanogen from the high temperature oil reservoir water [J]. China J. Biotech.(生物工程学报), 2010, 26(7): 1009-1013
[30] Yang Wei(杨薇). Industry prospect and specific properties of methanogens [J]. Anhui Chemical Industry(安徽化工), 2010(4): 10-13
[1] DENG Weifeng, JIANG Zhenhua, LIU Shaoshuai, ZHANG Ankuo, WU Yinong. Optimization design and experimental properties of high-temperature and high-capacity pulse tube cooler [J]. CIESC Journal, 2019, 70(1): 107-115.
[2] CHEN Zheng, WANG Li, ZHOU Jian. Computer simulations on switching effect of nanopores modified by dual-responsive block polymers [J]. CIESC Journal, 2019, 70(1): 271-279.
[3] WANG Yan, SHI Lei, FAN Jiaqi, CHEN Fei, YAO Jie, XU Guangwen. High-efficiency catalytic synthesis of polyoxymethoxy dimethylether from sulfolane-treated sulfonic acid resin [J]. CIESC Journal, 2019, 70(1): 116-127.
[4] CHEN Yufei, GENG Chengbao, CHU Hongyue, WANG Botao, GUO Hongyuan, YUE Chunyan. Micro-morphology and properties of modified MMT/PES-MBAE composite [J]. CIESC Journal, 2018, 69(S1): 148-154.
[5] WANG Xueliang, LI Hongguang. Artificial affective neural networks with applications [J]. CIESC Journal, 2018, 69(S1): 80-86.
[6] LI Han, PU Wenhao, YANG Ning, MAO Yanqin, YUE Chen, ZHANG Qi. Experimental study on air-paraffin direct contact heat transfer characteristics [J]. CIESC Journal, 2018, 69(9): 3792-3798.
[7] ZHENG Ligang, WANG Yalei, YU Shuijun, ZHU Xiaochao, LI Gang, DU Depeng, DOU Zengguo. Coupled relationship between flame and overpressure of gas explosion inhibited by NaHCO3 [J]. CIESC Journal, 2018, 69(9): 4129-4136.
[8] JIA Xiaoxia, WANG Li, YUAN Ning, YANG Jiangfeng, LI Jinping. CH4/N2 adsorption separation research of MOFs with divalent Cr/Mo/Ni unsaturated metal sites [J]. CIESC Journal, 2018, 69(9): 3896-3904.
[9] XIE Min, CHENG Jian, CHEN Gang, ZHANG Lei, REN Xiaohan. Chlorine release during low-temperature pyrolysis of olive residue [J]. CIESC Journal, 2018, 69(8): 3693-3700.
[10] YANG Qing, YANG Yubing, LI Jianmin, FENG Hongli, ZHOU Xueyang, LIU Xiuhong. Partial nitrification coupled anaerobic ammonia oxidation process to treat low C/N domestic sewage [J]. CIESC Journal, 2018, 69(8): 3635-3642.
[11] ZHANG Haiyong, LIU Qian, LIU Xingkun, ZHANG Xianglan, XIE Qiang, WANG Yonggang. Phase equilibrium and separation of n-dodecane-toluene-phenol in low temperature coal tar [J]. CIESC Journal, 2018, 69(8): 3479-3487.
[12] ZHANG Liang, LIU Xiaochen, LIU Guiyan, LÜ Bo, FENG Xudong, LI Chun. Energy drive and regeneration in biotransformation [J]. CIESC Journal, 2018, 69(7): 2807-2814.
[13] TIAN Haifeng, YAO Lu, GAO Jialiang, ZHA Fei, GUO Xiaojun. Effects of silylation and organic weak alkali modified Mo/HZSM-5 on catalytic performance in non-oxidative aromatization of methane reaction [J]. CIESC Journal, 2018, 69(7): 3009-3017.
[14] LI Haiyan, LIU Huan, WANG Jiaxing, JIN Minghao, DENG Hongping, LU Geng, ZHANG Xiuju, YAO Hong. Characteristics of dehydrated sludge based on chemical modification: low temperature hot-air drying [J]. CIESC Journal, 2018, 69(7): 3257-3262.
[15] DENG Xiaoning, YE Yuanyuan, ZHOU Xinkai, CHENG Yu'e, LIN Chunmian. Effect of exogenous H2 on biogas fermentation system [J]. CIESC Journal, 2018, 69(7): 3226-3233.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!