CIESC Journal ›› 2019, Vol. 70 ›› Issue (5): 2016-2024.doi: 10.11949/j.issn.0438-1157.20190018

• Material science and engineering,nanotechnology • Previous Articles    

Study of CO2 adsorption on amine functionalized graphene oxide porous materials

Yamin LIU1,2(),Lei PENG1,Fengying SU1,Xiangxiang WANG1,Yizhen HUANG1,Zaichun LIN1,Xiaojing YU1,Yishan PEI1   

  1. 1. School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, Fujian, China
    2. Fujian Indoor Environment Engineering Technology Research Center, Fuzhou 350118, Fujian, China
  • Received:2019-01-07 Revised:2019-03-01 Online:2019-05-05 Published:2019-05-10
  • Contact: Yamin LIU E-mail:mingjing2000@126.com

Abstract:

CO2 adsorbents were prepared by chemical grafting ethylenediamine(EDA), diethylenetriamine(DETA), tetraethylenepentamime(TEPA), and polyethyleneimine(PEI) onto surface of graphene oxide combined with the ultrasound treatment. The pore diameter of amine functionalized GO is 1.35—4.34 nm, and the surface area is 98.032—210.465 m2/g. Among the four amine functionalized GO, the PEI functionalized GO has the largest CO2 adsorption capacity, reaching 1.5 mmol/g at 70°C. Besides, the adsorbent also exhibited stable cyclic adsorption-regeneration performance with almost unchanged adsorption capacity after 20 cycles. The type of isothermal adsorption line is type Ⅰ, and the Avrami simulation results agree well with the adsorption experimental data.

Key words: graphene oxide, amine functionalization, adsorption, CO2 capture, preparation

CLC Number: 

  • TQ 465.92

Fig.1

Raman spectra of GO"

Fig.2

XRD patterns of GO, EDA-GO, DETA-GO, TEPA-GO and PEI-GO"

Table 1

Textural properties of GO, EDA-GO, DETA, TEPA-GO and PEI-GO"

样品 比表面积/(m2/g) 孔容/(cm3/g) 孔径(BJH)/nm
GO 289.028 0.046 1.91
EDA-GO 98.032 0.016 4.34
DETA-GO 210.465 0.043 1.73
TEPA-GO 194.484 0.042 1.69
PEI-GO 162.042 0.031 1.35

Table 2

Elemental analysis of GO and amine functionalized GO"

Sample C/%(mass) N/%(mass) O/%(mass)
GO 62.17 0.08 20.24
EDA-GO 59.37 2.34 18.06
DETA-GO 53.52 4.18 14.84
TEPA-GO 52.68 4.84 14.66
PEI-GO 51.06 5.42 13.08

Fig.3

SEM images of GO, EDA-GO, TEPA-GO and PEI-GO"

Fig.4

TGA curves of samples"

Fig.5

FTIR spectrums of GO, EDA-GO, DETA-GO and PEI-GO"

Table 3

Adsorption capacity of samples"

Sample Adsorption capacity/(mmol CO2/g)
30℃ 50℃ 70℃
PEI-GO 0.3 1.2 1.5
TEPA-GO 0.3 0.9 1.3
DETA-GO 0.3 0.8 1.2
EDA-GO 0.1 0.5 0.7
GO 0.2 0.1 0

Table 4

Constants of Langmuir model for CO2 adsorption on PEI-GO"

T/℃ q m /(mmol/g) k L/min?1 R 2
70 1.8523 0.3737 0.997
50 1.59147 0.2257 0.988
30 0.50101 0.15023 0.979

Fig.6

CO2 adsorption isotherms of PEI-GO at 30℃, 50℃ and 70℃"

Fig.7

Avrami models on experimental CO2 uptake of PEI-GO at various adsorption temperatures"

Table 5

Constants of Avrami model for CO2 adsorption on PEI-GO"

T/℃ q e/(mmol/g) k a/min-1 n R 2 q a/(mmol/g)
30 0.35096 0.46997 1.12044 0.998 0.3
50 1.28668 0.27768 1.28763 0.998 1.2
70 1.61234 0.272 1.05424 0.999 1.5

Fig.8

Recycle adsorption/desorption runs of PEI-GO"

1 Boothandford M E , Abanades J C , Anthony E J , et al . Carbon capture and storage update[J]. Energy & Environmental Science, 2014, 7(1): 130-189.
2 Dowell N M , Fennell P S , Shah N , et al . The role of CO2 capture and utilization in mitigating climate change[J]. Nature Climate Change, 2017, 7(4): 243-249.
3 Yuan W , Li Z , Alexander O , et al . A review of post-combustion CO2 capture technologies from coal-fired power plants[J]. Energy Procedia, 2017, 114: 650-665.
4 Mohamed K , Yann L M , Olivier A , et al . Up-to-date CO2 capture in thermal power plants[J]. Energy Procedia, 2017, 114: 95-103.
5 Chiang Y C , Juang R S . Surface modifications of carbonaceous materials for carbon dioxide adsorption: a review[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 71: 214-234.
6 Sanz-Pérez E S , Dantas T C M , Arencibia A , et al . Reuse and recycling of amine-functionalized silica materials for CO2 adsorption[J]. Chemical Engineering Journal, 2017, 308: 1021-1033.
7 Creamer A E , Gao B . Carbon-based adsorbents for post-combustion CO2 capture: a critical review[J]. Environmental Science & Technology, 2016, 50(14): 7276.
8 Kishor R , Ghoshal A K . Amine-modified mesoporous silica for CO2 adsorption: the role of structural parameters[J]. Industrial & Engineering Chemistry Research, 2017, 56(20): 6078-6087.
9 张文静, 吴烨, 蔡天意, 等 . 胺基CO2固体吸附剂脱碳特性及SO2的影响[J]. 化工学报, 2018, 69(4): 1586-1594.
Zhang W J , Wu Y , Cai T Y , et al . Effect of SO2 on CO2 sorption characteristics using solid amine CO2 sorbent[J]. CIESC Journal, 2018, 69(4): 1586-1594.
10 Chen C , Lee Y R , Ahn W S . CO2 adsorption over metal-organic frameworks: a mini review[J]. Journal of Nanoscience & Nanotechnology, 2016, 16(5): 4291.
11 陈敏玲, 王兴杰, 肖静, 等 . 淀粉基多孔碳材料的制备及其吸附CO2/CH4性能[J]. 化工学报, 2018, 69(1): 455-463.
Chen M L , Wang X J , Xiao J , et al . Preparation of porous carbon material from starch and its performance for separation of CO2/CH4 [J]. CIESC Journal, 2018, 69(1): 455-463.
12 谢丹妍, 邢华斌, 张治国, 等 . 多孔氢键金属-有机框架材料对乙炔和二氧化碳的吸附分离[J]. 化工学报, 2017, 68(1): 154-162.
Xie D Y , Xing H B , Zhang Z G , et al . Porous hydrogen-bonded organometallic frameworks for adsorption separation of acetylene and carbon dioxide[J]. CIESC Journal, 2017, 68(1): 154-162.
13 Balasubramanian R , Chowdhury S . Recent advances and progress in the development of graphene-based adsorbents for CO2 capture[J]. J. Mater. Chem. A, 2015, 3(44): 21968-21989.
14 Chisholm M F , Lee J , Guo J , et al . Functionalization of graphene[J]. Microscopy & Microanalysis, 2015, 21(S3): 737-738.
15 Gadipelli S , Zheng X G . Graphene-based materials: synthesis and gas sorption, storage and separation[J]. Progress in Materials Science, 2015, 69(69): 1-60.
16 Balandin A A , Ghosh S , Bao W , et al . Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3): 902.
17 Ghosh A , Subrahmanyam K S , Krishna K S , et al . Uptake of H2 and CO2 by graphene[J]. Journal of Physical Chemistry C, 2008, 112(40): 15704-15707.
18 Mishra A K , Ramaprabhu S . Carbon dioxide adsorption in graphene sheets[J]. AIP Advances, 2011, 1(3): 321.
19 Hong S M , Kim S H , Lee K B . Adsorption of carbon dioxide on 3-aminopropyl-triethoxysilane modified graphite oxide[J]. Energy & Fuels, 2013, 27(6): 3358-3363.
20 Sui Z Y , Cui Y , Zhu J H , et al . Preparation of three-dimensional graphene oxide-polyethylenimine porous materials as dye and gas adsorbents [J]. ACS Applied Materials & Interfaces, 2013, 5(18): 9172.
21 Chowdhury S , Parshetti G K , Balasubramanian R . Post-combustion CO2 capture using mesoporous TiO2 /graphene oxide nanocomposites[J]. Chemical Engineering Journal, 2015, 263: 374-384.
22 Marcano D C , Kosynkin D V , Berlin J M , et al . Improved synthesis of graphene oxide [J]. ACS Nano, 2010, 4 (8): 4806-4814.
23 Ferrari A C , Basko D M . Raman spectroscopy as a versatile tool for studying the properties of graphene[J]. Nature Nanotechnology, 2013, 8(4): 235-246.
24 Ling X , Zhang J . Interference phenomenon in graphene-enhanced Raman scattering[J]. Journal of Physical Chemistry C, 2011, 115(6): 2835-2840.
25 Gupta A , Chen G , Joshi P , et al . Raman scattering from high-frequency phonons in supported n-graphene layer films[J]. Nano Letters, 2006, 6(12): 2667-2673.
26 Graf D , Molitor F , Ensslin K , et al . Spatially resolved Raman spectroscopy of single- and few-layer graphene[J]. Nano Letters, 2006, 7(2): 238.
27 Liu J , Jeong H , Liu J , et al . Reduction of functionalized graphite oxides by trioctylphosphine in non-polar organic solvents[J]. Carbon, 2010, 48(8): 2282-2289.
28 Kumar A S K , Rajesh N . Exploring the interesting interaction between graphene oxide, Aliquat-336 (a room temperature ionic liquid) and chromium(Ⅵ) for wastewater treatment[J]. RSC Advances, 2013, 3(8): 2697-2709.
29 Fan L , Luo C , Li X , et al . Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue[J]. Journal of Hazardous Materials, 2012, S215/S216(10): 272-279.
30 Zhao Y , Ding H , Zhong Q . Preparation and characterization of aminated graphite oxide for CO2 capture[J]. Applied Surface Science, 2012, 258(10): 4301-4307.
31 尚玉, 张东, 刘艳云, 等 . 电化学还原法制备石墨烯:制备与表征[J]. 功能材料, 2015, 46(16): 16009-16015.
Shang Y , Zhang D , Liu Y Y , et al . Synthesis of graphene via electrochemical reduction method: preparation and characterization [J]. Journal of Functional Materials, 2015, 46(16): 16009-16015.
32 叶振华 . 化工吸附分离过程[M]. 北京: 中国石化出版社, 1992: 41
Ye Z H . Chemical Engineering Adsorption Processes[M]. Beijing: China Petrochemical Press, 1992: 41
33 Ho Y S . Citation review of Lagergren kinetic rate equation on adsorption reactions[J]. Scientometrics, 2004, 59: 171-177.
34 Ho Y S . Review of second-order models for adsorption systems[J]. J. Hazard. Mater., 2006,136: 681-689.
35 Plazinski W , Rudzinski W , Plazinska A . Theoretical models of sorption kinetics including a surface reaction mechanism: a review[J]. Adv. Colloid. Interface. Sci., 2009, 152(1/2): 2-13.
36 Serna-Guerrero R , Sayari A . Modeling adsorption of CO2 on amine-functionalized mesoporous silica(Ⅱ): Kinetics and breakthrough curves[J]. Chem. Eng. J., 2010, 161(1/2): 182-190.
37 Avrami M . Kinetics of phase change(Ⅰ): General theory[J]. Journal of Chemical Physics, 1939, 7(12): 1103-1112.
38 Avrami M . Granulation, phase change, and microstructure kinetics of phase change(Ⅲ)[J]. Journal of Chemical Physics, 1941, 9(2): 177-184.
39 Benedict J B , Coppens P . Kinetics of the single-crystal to single-crystal two-photon photodimerization of alpha-trans-cinnamic acid to alpha-truxillic acid[J]. Journal of Physical Chemistry A, 2009, 113(13): 3116-3120.
[1] Daofeng MEI, Haibo ZHAO, Shuiping YAN. Thermodynamics simulation of biogas fueled chemical looping reforming for H2 generation using NiO/Ca2Al2SiO7 [J]. CIESC Journal, 2019, 70(S1): 193-201.
[2] Sheng XU, Lingli LIU, Meng CAO, Shangxi ZHANG, Xin DAI, Yang LIU, Zhenxi WANG. Formation of framework supported pore for PVA/ZnO composite and Pb(Ⅱ) adsorption [J]. CIESC Journal, 2019, 70(S1): 130-140.
[3] Hongbin WANG, Jiajie PENG, Haiquan SUN, Quanwen PAN, Ruzhu WANG, Hailiang WANG, Zhaohong XU. Design and experimental study on silica gel-water adsorption air cooler [J]. CIESC Journal, 2019, 70(S1): 186-192.
[4] Lijie SHI, Min WANG. Phase behavior of K-Mg mixed salt during transformation-flotation from Yiliping magnesium sulfate-type salt lake [J]. CIESC Journal, 2019, 70(5): 1832-1841.
[5] Donghai AN, Xiaolin HAN, Xingxing CHENG, Binxuan ZHOU, Ying ZHENG, Yong DONG. Effect mechanisms of different flue gas on adsorption of mercury by powder activated coke [J]. CIESC Journal, 2019, 70(4): 1575-1582.
[6] Yucong SONG, Xiaoshu DING, Yahui YAN, Shufang WANG, Yanji WANG. Catalytic performance of graphene oxide composite metal catalyst in dimethyl carbonate synthesis [J]. CIESC Journal, 2019, 70(4): 1401-1408.
[7] Hao LIU, Tianwei ZHANG, Dengyou XIA, Qiang LIANG, Huaibin WANG. Study on extinguishing efficiency in suppressing class A fire by gel-type core-shell particles [J]. CIESC Journal, 2019, 70(4): 1652-1660.
[8] Mao LIN, Huosheng LI, Gaosheng ZHANG, Ping ZHANG, Jianyou LONG, Tangfu XIAO, Hongguo ZHANG, Jingfang XIONG, Yongheng CHEN. Removal of Tl from wastewater by nickel ferrite-based hydrothermal carbon coupled with hypochlorite oxidation [J]. CIESC Journal, 2019, 70(4): 1591-1604.
[9] Qian ZHANG, Xiangyang LIU, Wang CHEN, Heng WU, Pengying XIAO, Fangying JI, Chen LI, Haiming NIAN. Preparation of a novel phosphorus removal filler and optimization of phosphate removal adsorption bed process [J]. CIESC Journal, 2019, 70(3): 1099-1110.
[10] Xiaohang LI, Yun LIU, Yinjiao SU, Yang TENG, Yanjun GUAN, Kai ZHANG. Difference of fly ash characteristics from PC and CFB boilers and its effect on mercury adsorption capability [J]. CIESC Journal, 2019, 70(3): 1075-1082.
[11] Xiaoshi LIU, Deqiu ZOU, Ruijun HE, Xianfeng MA. Preparation and heat transfer characteristics of GO/paraffin composite phase change emulsions [J]. CIESC Journal, 2019, 70(3): 1188-1197.
[12] Yunbiao DUAN, Cunying XU, Xiang WANG, Hai LIU, Mengting HUANG. Synthesis of Fe3+-doped ZnO nanostructures by antisolvent precipitation method and their visible photocatalytic activity [J]. CIESC Journal, 2019, 70(3): 1198-1207.
[13] Qiang ZHOU, Junzheng HAO, Linhua ZHU, Hong WANG, Tian SI, Yanping HE, Yanlin SUN. Foam phase preparation of porous poly(methyl methacrylate-co-butyl acrylate) microspheres in continuous process [J]. CIESC Journal, 2019, 70(3): 1208-1219.
[14] Long LI, Tianshu GE, Xuannan WU, Yanjun DAI. Adsorption properties of paper based silica gel adsorbents for benzene vapor [J]. CIESC Journal, 2019, 70(3): 951-959.
[15] Yuhan ZHOU, Xiaoyu CHEN, Cheng ZUO, Qingjie GUO, Jun ZHAO. Performances of waste paper cellulose/SiO2 composite aerogel [J]. CIESC Journal, 2019, 70(3): 1120-1126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LING Lixia, ZHANG Riguang, WANG Baojun, XIE Kechang. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] LEI Zhigang, LONG Aibin, JIA Meiru, LIU Xueyi. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] SU Haifeng, LIU Huaikun, WANG Fan, LÜXiaoyan, WEN Yanxuan. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] WANG Jianlin, XUE Yaoyu, YU Tao, ZHAO Liqiang. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] SUN Fubao, MAO Zhonggui, ZHANG Jianhua, ZHANG Hongjian, TANG Lei, ZHANG Chengming, ZHANG Jing, ZHAI Fangfang. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] Gao Ruichang, Song Baodong and Yuan Xiaojing( Chemical Engineering Research Center, Tianjin University, Tianjin 300072). LIQUID FLOW DISTRIBUTION IN GAS - LIQUID COUNTER - CONTACTING PACKED COLUMN[J]. , 1999, 50(1): 94 -100 .
[7] Su Yaxin, Luo Zhongyang and Cen Kefa( Institute of Thermal Power Engineering , Zhejiang University , Hangzhou 310027). A STUDY ON THE FINS OF HEAT EXCHANGERS FROM OPTIMIZATION OF ENTROPY GENERATION[J]. , 1999, 50(1): 118 -124 .
[8] Luo Xiaoping(Department of Industrial Equipment and Control Engineering , South China University of Technology, Guangzhou 510641)Deng Xianhe and Deng Songjiu( Research Institute of Chemical Engineering, South China University of Technology, Guangzhou 5106. RESEARCH ON FLOW RESISTANCE OF RING SUPPORT HEAT EXCHANGER WITH LONGITUDINAL FLUID FLOW ON SHELL SIDE[J]. , 1999, 50(1): 130 -135 .
[9] Jin Wenzheng , Gao Guangtu , Qu Yixin and Wang Wenchuan ( College of Chemical Engineering, Beijing Univercity of Chemical Technology, Beijing 100029). MONTE CARLO SIMULATION OF HENRY CONSTANT OF METHANE OR BENZENE IN INFINITE DILUTE AQUEOUS SOLUTIONS[J]. , 1999, 50(2): 174 -184 .
[10]

LI Qingzhao;ZHAO Changsui;CHEN Xiaoping;WU Weifang;LI Yingjie

.

Combustion of pulverized coal in O2/CO2 mixtures and its pore structure development

[J]. , 2008, 59(11): 2891 -2897 .