CIESC Journal ›› 2019, Vol. 70 ›› Issue (5): 1682-1692.doi: 10.11949/j.issn.0438-1157.20190016

• Fluid dynamics and transport phenomena • Previous Articles     Next Articles

Numerical investigation of bubbling fluidized bed with binary particle mixture using EMMS mesoscale drag model

TONG Ying1,2,AHMAD Nouman1,LU Bona1,2,3(),WANG Wei1,2   

  1. 1. State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
    2. Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
    3. Dalian National Laboratory for Clean Energy, Dalian 116023, Liaoning, China
  • Received:2019-01-07 Revised:2019-02-22 Online:2019-05-05 Published:2019-05-10
  • Contact: LU Bona E-mail:bnlu@ipe.ac.cn

Abstract:

Gas-solid bubbling fluidized beds have various industrial applications. The particles involved in practical applications usually display polydisperse characteristics (having different diameter or densities), resulting in segregation phenomena and consequently influencing flow hydrodynamics and reaction performance. Particle separation and mixing are inseparable from bubble motion, where interphase drag plays a key role. Recently, Ahmad et al. proposed a bubble-based mesoscale drag considering the effect of bidisperse features which is able to predict the bed expansion of binary bubbling fluidized beds. In this study, in order to investigate the applicability of the new drag model, two bubbling fluidized beds with different binary particle mixtures are simulated using the combination of the new drag model and the continuum model. Then, the bubble motion and axial profiles of jetsam volume ratio under two different fluidization states are mainly analyzed. It is found that the new drag model can predict well the particle segregation and mixing behaviors when the binary particles are fluidized completely. However, when the binary particles are fluidized at the transition state, the new drag model shows poor predictions, and the solid-solid drag plays a notable role in improving the prediction.

Key words: binary particle mixture, fluidized bed, mesocale, drag, CFD, EMMS

CLC Number: 

  • TQ 021.1

Table 1

Material properties used in two systems of binary particle mixtures"

参数

石英砂

(silica sand)

玻璃珠

(glass bead)

硅胶

(silica gel)

系统1 √ (浮料) √ (沉料)
系统2 √ (沉料) √ (浮料)
Sauter平均粒径/μm 125 500 375
球形度 1 1 1
密度/(kg·m-3) 2600 2540 600
Geldart分类 B B A-B
终端速度/(m·s-1) 0.80 4.10 1.25
最小流态化速度/(m·s-1) 0.022 0.23 0.032

Fig.1

Schematic diagram of simulated gas-solid fluidized beds (unit: m)"

Table 2

Operating conditions for two systems of binary particle mixtures"

操作参数 系统1 系统2
颗粒堆料量/kg 2.8 2.85
沉料的初始体积比 X 20 0.5 0.2
初始堆料高度/m 0.135 0.4
表观气速/(m·s-1) 0.07,0.09 0.032,0.152

Table 3

Simulation settings"

Parameter Specification
transient formulation second-order implicit
pressure-velocity coupling phase coupled SIMPLE
gradient discretization green-Gauss cell based
momentum discretization second-order upwind
volume fraction discretization quick
granular temperature algebraic
granular viscosity Syamlal-O’Brien
granular bulk viscosity Lun-et-al
frictional viscosity Schaeffer
angle of internal friction 30
frictional pressure based-ktgf
frictional modulus derived
friction packing limit 0.5
solid pressure Lun-et-al
radial distribution Ma-Ahmadi
elasticity modulus derived

gas-solid drag

binary EMMS-bubbling or Gidaspow

model

solid-solid interaction Syamlal-O’Brien symmetric model
packing limit 0.62
restitution coefficient 0.9
physical time step 0.0001 s

Table 4

Average gas volume fraction and X 2 at height of 0.8 under three grid resolutions"

网格尺寸 全床平均气含率 H=0.8对应的X 2
5 mm ×5 mm 0.8063 0.4460
3 mm ×3 mm 0.8077 0.4572
2 mm ×2 mm 0.8081 0.4610

Fig.2

Evolution of distribution of gas holdup for system 1 (U g=0.09 m·s-1)"

Fig.3

Distribution of gas holdup for systems 1 and 2 when reaching quasi-steady state using both gas-solid drag models"

Fig.4

Evolution of distribution of solid volume fraction for system 1 (U g=0.09 m·s-1)"

Fig.5

Axial profiles of volume ratio of jetsam fluidized completely"

Fig.6

Axial profiles of volume ratio of jetsam fluidized at transition state"

Fig.7

Axial profiles of volume ratio of jetsam (system 1: U g=0.07 m·s-1)"

Fig.8

Comparison of axial profiles of volume ratio of jetsam using different gas-solid drag models(system 1: U g=0.07 m·s-1, K=0.005)"

Fig.9

Axial profiles of volume ratio of jetsam (system 2: U g=0.032 m·s-1)"

1 Formisani B , Girimonte R , Vivacqua V . Fluidization of mixtures of two solids: a unified model of the transition to the fluidized state[J]. AIChE Journal, 2013, 59(3):729-735.
2 Geldart D , Baeyens J , Pope D J , et al . Segregation in beds of large particles at high velocity[J]. Powder Technology, 1981, 30(2):195-205.
3 Grace J R , Sun G . Influence of particle size distribution on the performance of fluidized bed reactors[J]. The Canadian Journal of Chemical Engineering, 2010, 69(5): 1126-1134.
4 Hoffmann A C , Janssen L P B M , Prins J . Particle segregation in fluidised binary mixtures[J]. Chemical Engineering Science, 1993, 48(9): 1583-1592.
5 Lu H L , Gidaspow D . Hydrodynamics of binary fluidization in a riser: CFD simulation using two granular temperatures[J]. Chemical Engineering Science, 2003, 58(16):3777-3792.
6 Rowe P N . A preliminary quantitative study of particle segregation in gas fluidised beds-binary systems of near spherical particles[J]. Transactions of the Institution of Chemical Engineers, 1972, 50:324-333.
7 van Wachem B G M , Schouten J C , van den Bleek C M , et al . CFD modeling of gas-fluidized beds with a bimodal particle mixture[J]. AIChE Journal, 2001, 47(6):1292-1302.
8 Joseph G G , José L , Hrenya C M , et al . Experimental segregation profiles in bubbling gas fluidized bed[J]. AIChE Journal, 2007, 53(11):2804-2813.
9 Lu B , Wang W , Li J . Searching for a mesh-independent sub-grid model for CFD simulation of gas-solid riser flows[J]. Chemical Engineering Science, 2009, 64(15):3437-3447.
10 Wang W , Li J . Simulation of gas-solid two-phase flow by a multi-scale CFD approach -extension of the EMMS model to the sub-grid level[J]. Chemical Engineering Science, 2007, 62(1/2): 208-231.
11 Yang N , Wang W , Ge W , et al . CFD simulation of concurrent-up gas-solid flow in circulating fluidized beds with structure-dependent drag coefficient[J]. Chemical Engineering Journal, 2003, 96(8): 71-80.
12 Hong K , Shi Z , Wang W , et al . A structure-dependent multi-fluid model (SFM) for heterogeneous gas-solid flow[J]. Chemical Engineering Science, 2013, 99(9): 191-202.
13 Hong K , Shi Z , Ullah A , et al . Extending the bubble-based EMMS model to CFB riser simulations[J]. Powder Technology, 2014, 266(12): 424-432.
14 Chew J W , Hays R , Findlay J G , et al . Cluster characteristics of Geldart group B particles in a pilot-scale CFB riser (I): Monodisperse systems[J]. Chemical Engineering Science, 2012, 68(1):72-81.
15 Ahmad N , Tian Y , Lu B , et al . Extending the EMMS/bubbling model to fluidization of binary particle mixture: formulation and steady-state validation[J]. Chinese Journal of Chemical Engineering, 2019, 27(1): 54-62.
16 Ahmad N . Mesoscale modeling and CFD simulation of gas-fluidized bed with binary particle mixture [D]. Beijing: University of Chinese Academy of Sciences, 2018.
17 刘大有: 二相流体动力学[M]. 北京: 高等教育出版社, 1993.
Liu D Y . Fluid Dynamics of Two-phase Systems [M]. Beijing: Higher Education Press, 1993.
18 Gidaspow D . Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions [M]. Boston: Academic Press, 1994.
19 Lungu M , Zhou Y , Wang J , et al . A CFD study of a bi-disperse gas-solid fluidized bed: effect of the EMMS sub grid drag correction[J]. Powder Technology, 2015, 280: 154-172.
20 Tagliaferri C , Mazzei L , Lettieri P , et al . CFD simulation of bubbling fluidized bidisperse mixtures: effect of integration methods and restitution coefficient[J]. Chemical Engineering Science, 2013, 102(3): 324-334.
21 Chao Z , Wang Y , Jakobsen J P , et al . Derivation and validation of a binary multi-fluid Eulerian model for fluidized beds[J]. Chemical Engineering Science, 2011, 66: 3605-3616.
22 Lu H L , Liu W T , Bie R S , et al . Kinetic theory of fluidized binary granular mixtures with unequal granular temperature[J]. Physica A: Statistical Mechanics and Its Applications, 2000, 284(1/2/3/4): 265-276.
23 Wen C Y , Yu Y H . Mechanics of fluidization[J]. Chemical Engineering Progress Symposium Series, 1966, 62(62): 100-111.
24 Gidaspow D . Hydrodynamics of fluidization and heat transfer: supercomputer modeling[J]. Applied Mechanics Reviews, 1986, 39(123): 1-22.
25 Ergun S . Fluid flow through packed columns[J]. Chemical Engineering and Processing, 1952, 48(2): 89-94.
26 Bell R A . Numerical modelling of multi-particle flows in bubbling gas-solid fluidised beds [D]. Melbourne: Swinburne University of Technology, 2000.
27 Arastoopour H , Wang C H , Weil S A . Particle-particle interaction force in a dilute gas-solid system[J]. Chemical Engineering Science, 1982, 37(9): 1379-1386.
28 Syamlal M . Multiphase hydrodynamics of gas-solid flow[D]. Chicago: Illinois Institute of Technology, 1985.
29 Gidaspow D , Ding J , Jayaswal U K . Multiphase Navier-Stokes equation solver[C]// Numerical Methods for Multiphase Flow. ASME, New York, 1990, 91: 47-56.
30 Chao Z , Wang Y , Jakobsen J P , et al . Investigation of the particle-particle drag in a dense binary fluidized bed[J]. Powder Technology, 2012, 224: 311-322.
31 Syamlal M . The particle-particle drag term in a multiparticle model of fluidization[R]. National Technical information service, Springfield, VA. DOE/MC/21353-2373, NTIS/DE87006500, 1987.
32 Marzocchella A , Salatino P , Pastena V D , et al . Transient fluidization and segregation of binary mixtures of particles[J]. AIChE Journal, 2000, 46(11): 2175-2182.
33 Olivieri G , Marzocchella A , Salatino P . Segregation of fluidized binary mixtures of granular solids[J]. AIChE Journal, 2004, 50(12): 3095-3106.
34 Li T , Pannala S , Shahnam M . CFD simulations of circulating fluidized bed risers (Ⅱ): Evaluation of differences between 2D and 3D simulations[J]. Powder Technology, 2014, 265: 13-22.
[1] Junjie LIN, Kun LUO, Shuai WANG, Chenshu HU, Jianren FAN. Verification of coarse-grained CFD-DEM method in multiple flow regimes [J]. CIESC Journal, 2019, 70(5): 1702-1712.
[2] Junqiang WU, Wenming JIANG, Shilin DU, Yang LIU. Experiment on drag reduction of heavy oil in horizontal pipeline by water annular conveying [J]. CIESC Journal, 2019, 70(5): 1734-1741.
[3] Wu SU, Xiaogang SHI, Yingya WU, Jinsen GAO, Xingying LAN. CFD simulation on hydrogenation of acetylene to ethylene in slurry bed [J]. CIESC Journal, 2019, 70(5): 1858-1867.
[4] Shunhao WANG, Wenli ZHU, Zhenggen HU, Rui ZHOU, Liu YU, Bin WANG, Xiaobin ZHANG. Numerical simulation and experimental validation of evaporation characteristics of scaled liquid hydrogen tank [J]. CIESC Journal, 2019, 70(3): 840-849.
[5] Chengzhen NI, Wenli DU, Guihua HU. Impact of turbulence model in coupled simulation of ethylene cracking furnace [J]. CIESC Journal, 2019, 70(2): 450-459.
[6] Huahai ZHANG, Tiefeng WANG. Generality of CFD-PBM coupled model for simulations of gas-liquid bubble column [J]. CIESC Journal, 2019, 70(2): 487-495.
[7] Pan XIONG, Shuguang YAN, Weiyin LIU. Structure optimization of cyclone based on response surface method [J]. CIESC Journal, 2019, 70(1): 154-160.
[8] HAN Tianyi, YAO Yuan, XU Jun, QI Liqiang, LI Jintao, TENG Fei. Synergetic mechanism of hygroscopic agent, surfactant and catalyst on desulfurization of flue gas circulating fluidized bed [J]. CIESC Journal, 2018, 69(9): 4044-4050.
[9] CHEN Liang, ZHAO Fan, YAN Guangjing, WANG Chunbo. Synergetic effect of H2O and SO2 on calcination kinetics of limestone during simultaneous calcination/sulfation reaction in CFB boilers [J]. CIESC Journal, 2018, 69(9): 3859-3868.
[10] Zhou Yunlong, Lu Zhiye, WANG Meng. Recursive analysis and agglomerate state recognition of spray gas-solid fluidized bed [J]. CIESC Journal, 2018, 69(9): 3835-3842.
[11] YIN Yue, YUAN Linjiang, NIU Yuwei. Relationship between liquid change in dual chambers and performance of electricity production in DCMFC [J]. CIESC Journal, 2018, 69(8): 3605-3610.
[12] CHEN Guoqi, SUN Jianjun, SUN Dianfeng, MA Chenbo. Performance analysis of double-end self-pumping mechanical seal for main coolant pump of sodium-cooled fast reactor [J]. CIESC Journal, 2018, 69(8): 3565-3576.
[13] FENG Lele, WANG Jingyu, WU Yuxin, ZHANG Hai, ZHANG Man, LÜ Junfu, YUE Guangxi. Experimental and numerical investigation on effect of particle characteristics on performance of plate-type impact separator [J]. CIESC Journal, 2018, 69(8): 3348-3355.
[14] HU Rentao, REN Libo, WANG Dewu, LIU Yan, ZHANG Shaofeng. Numerical simulation of fully developed liquid-solid flow in vertical narrow channel [J]. CIESC Journal, 2018, 69(8): 3408-3417.
[15] SUN Ziwen, CHEN Dailin, ZHONG Wenqi, YU Ai-Bing. MP-PIC simulation of particle clusters in fast fluidized bed risers [J]. CIESC Journal, 2018, 69(8): 3443-3451.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LING Lixia, ZHANG Riguang, WANG Baojun, XIE Kechang. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] LEI Zhigang, LONG Aibin, JIA Meiru, LIU Xueyi. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] SU Haifeng, LIU Huaikun, WANG Fan, LÜXiaoyan, WEN Yanxuan. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] WANG Jianlin, XUE Yaoyu, YU Tao, ZHAO Liqiang. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] SUN Fubao, MAO Zhonggui, ZHANG Jianhua, ZHANG Hongjian, TANG Lei, ZHANG Chengming, ZHANG Jing, ZHAI Fangfang. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] Gao Ruichang, Song Baodong and Yuan Xiaojing( Chemical Engineering Research Center, Tianjin University, Tianjin 300072). LIQUID FLOW DISTRIBUTION IN GAS - LIQUID COUNTER - CONTACTING PACKED COLUMN[J]. , 1999, 50(1): 94 -100 .
[7] Su Yaxin, Luo Zhongyang and Cen Kefa( Institute of Thermal Power Engineering , Zhejiang University , Hangzhou 310027). A STUDY ON THE FINS OF HEAT EXCHANGERS FROM OPTIMIZATION OF ENTROPY GENERATION[J]. , 1999, 50(1): 118 -124 .
[8] Luo Xiaoping(Department of Industrial Equipment and Control Engineering , South China University of Technology, Guangzhou 510641)Deng Xianhe and Deng Songjiu( Research Institute of Chemical Engineering, South China University of Technology, Guangzhou 5106. RESEARCH ON FLOW RESISTANCE OF RING SUPPORT HEAT EXCHANGER WITH LONGITUDINAL FLUID FLOW ON SHELL SIDE[J]. , 1999, 50(1): 130 -135 .
[9] Jin Wenzheng , Gao Guangtu , Qu Yixin and Wang Wenchuan ( College of Chemical Engineering, Beijing Univercity of Chemical Technology, Beijing 100029). MONTE CARLO SIMULATION OF HENRY CONSTANT OF METHANE OR BENZENE IN INFINITE DILUTE AQUEOUS SOLUTIONS[J]. , 1999, 50(2): 174 -184 .
[10]

LI Qingzhao;ZHAO Changsui;CHEN Xiaoping;WU Weifang;LI Yingjie

.

Combustion of pulverized coal in O2/CO2 mixtures and its pore structure development

[J]. , 2008, 59(11): 2891 -2897 .