CIESC Journal ›› 2019, Vol. 70 ›› Issue (5): 1973-1980.doi: 10.11949/j.issn.0438-1157.20190003

• Energy and environmental engineering • Previous Articles     Next Articles

Investigation on combustion characteristics of ethanol and dimethyl ether micro-jet flames

Shuai REN1,4(),Xing LI1,2,3(),Jing ZHANG1,2,3,Xiaohan WANG1,2,3,Daiqing ZHAO1,2,3   

  1. 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China
    2. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, Guangdong, China
    3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, Guangdong, China
    4. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2019-01-03 Revised:2019-02-11 Online:2019-05-05 Published:2019-05-10
  • Contact: Xing LI E-mail:renshuai@ms.giec.ac.cn;lixing@ms.giec.ac.cn

Abstract:

Combustion characteristics of ethanol and dimethyl ether (DME) micro-jet flames were investigated experimentally and numerically. Four typical flames were observed in experiments of both ethanol flames and DME flames. The OH distributions of micro-jet flames were obtained by using OH-Planar Laser Induced Fluorescence (OH-PLIF) measuring system, the results showed that stable ethanol flames at relatively high velocities have smaller diameter and are slightly higher than counterparts of DME flames. Numerical simulation of ethanol and DME micro-jet flames were performed by numerical computations with a detailed chemical reaction mechanism, and the computed results agreed well with the experimental results. Reaction flux analyses of these two fuels were also performed with numerical calculation of one-dimensional non-premixed counterflow flame, which showed that there is a significant difference in intermediate species between the ethanol and DME flames. And the difference in chemical reaction characteristics leads to the difference in the flame structure of these two fuels.

Key words: microscale non-premixed flame, ethanol, dimethyl ether, flame shape, chemical reaction characteristics

CLC Number: 

  • TK 16

Fig. 1

Experimental system of ethanol fired micro-jet flame"

Fig.2

DME supply and heating system"

Fig.3

Physic model and boundary conditions"

Fig. 4

Flame shapes of ethanol and DME micro-jet flames at different fuel mixture velocities"

Fig.5

Measured OH distributions of ethanol (left) and DME (right) micro-jet flames at different fuel mixture flow velocities"

Fig. 6

Computed OH distributions of ethanol (left) and DME (right) micro-jet flames at different fuel mixture flow velocities"

Fig.7

Computed radial temperature profiles of ethanol and DME micro-jet flames at different heights"

Fig.8

Computed profiles of temperature and selected species of ethanol and DME flames (at a stretch rate of 50 s-1)"

Fig.9

Integrated reaction pathways of ethanol (a) and DME (b) flames"

Fig.10

Computed reaction rate profiles of primary consumption reactions of ethanol and DME"

Fig.11

Computed temperature and net heat release rate profiles of ethanol and DME flames"

Fig.12

Computed producing rate profiles of H atom in ethanol and DME flames"

1 Fernandez-Pello A C . Micropower generation using combustion: issues and approaches [J]. Proceedings of the Combustion Institute, 2002, 29(1): 883-899.
2 Ju Y G , Maruta K . Microscale combustion: technology development and fundamental research[J]. Progress in Energy and Combustion Science, 2011, 37(8): 669-715.
3 Maruta K . Micro and mesoscale combustion [J]. Proceedings of the Combustion Institute, 2011, 33(1): 125-150.
4 Nakamura K , Gao J , Matsuoka T . Progress in small-scale combustion[J]. Journal of Thermal Science and Technology, 2017, 12(1): 1-18.
5 Matta L M , Neumeier Y , Lemon B , et al . Characteristics of microscale diffusion flames[J]. Proceedings of the Combustion Institute, 2002, 29(1): 933-939.
6 Cheng T S , Chen C P , Chen C S , et al . Characteristics of microjet methane diffusion flames[J]. Combustion Theory and Modelling, 2006, 10 (5): 861-881.
7 Nakamura Y , Ban H , Saito K , et al . Structure of micro (millimeter size) diffusion flames[M]//Progress in Scale Modeling. Springer, 2008: 293-306.
8 张京, 李星, 杨浩林, 等 . 微喷管氢气非预混射流火焰燃烧特性[J]. 化工学报, 2016, 67(7): 2724-2731.
Zhang J , Li X , Yang H L , et al . Combustion characteristic of hydrogen non-premixed micro-jet flames[J]. CIESC Journal, 2016, 67(7): 2724-2731.
9 Zhang J , Li X , Yang H L , et al . Study on the combustion characteristics of non-premixed hydrogen micro-jet flame and the thermal interaction with solid micro tube[J]. International Journal of Hydrogen Energy, 2017, 42: 3853-3862.
10 李星, 张京, 杨浩林, 等 . 微喷管甲烷非预混射流火焰燃烧特性实验研究[J]. 工程热物理学报, 2016, 37(4): 907-911.
Li X , Zhang J , Yang H L , et al . Experimental investigation on combustion characteristics of methane non-premixed micro-jet-flames[J]. Journal of Engineering Thermophysics, 2016, 37(4): 907-911.
11 Li X , Zhang J , Yang H L , et al . Combustion characteristics of non-premixed methane micro-jet flame in coflow air and thermal interaction between flame and micro tube[J]. Applied Thermal Engineering, 2017, 112: 296-303.
12 Balat M , Balat H , Öz C . Progress in bioethanol processing[J]. Progress in Energy and Combustion Science, 2008, 34 (5): 551-573.
13 Balat M , Balat H . Recent trends in global production and utilization of bio-ethanol fuel[J]. Applied Energy, 2009, 86 (11): 2273-2282.
14 Lefebvre A H , Ballal D R . Gas Turbine Combustion: Alternative Fuels and Emissions[M]. Florida: CRC Press, 2014: 485.
15 Chen J , Peng X F , Yang Z L , et al . Characteristics of liquid ethanol diffusion flames from mini tube nozzles[J]. Combustion and Flame, 2009, 156(2): 460-466.
16 Xu T , Gao X N , Yang J , et al . Experimental and numerical simulation study of the microscale laminar flow diffusion combustion of liquid ethanol[J]. Industrial and Engineering Chemistry Research, 2013, 52 (23): 8021-8027.
17 Yang Z L , Xu T , Gan Y H . Experimental study on the diffusion flame using liquid ethanol as fuel in mini-scale[C]//Proceedings of Micro/Nanoscale Heat Transfer International Conference. Tainan, 2008: 853-857.
18 杨泽亮, 薛峰, 甘云华 . 陶瓷管作燃烧器的乙醇扩散小火焰实验研究[J]. 热科学与技术, 2008, 7(4): 367-372.
Yang Z L , Xue F , Gan Y H . Experimental study on the micro diffusion flame of liquid ethanol from small ceramic tube[J]. Journal of Thermal Science and Technology, 2008, 7(4): 367-372.
19 甘云华, 陈邵有, 杨泽亮, 等 . 液体乙醇微尺度扩散火焰高度的影响因素研究[J]. 工程热物理学报, 2010, 31(11): 1957-1960.
Gan Y H , Chen S Y , Yang Z L , et al . Study on the factors affecting the micro diffusion flame height of liquid ethanol[J]. Journal of Engineering Thermophysics, 2010, 31(11): 1957-1960.
20 Gan Y H , Xu J L , Yan Y Y , et al . A comparative study on free jet and confined diffusion flames of liquid ethanol from small nozzles[J]. Combustion Science and Technology, 2014, 186: 120-138.
21 甘云华, 佟洋, 罗智斌 . 乙醇在微尺度单电极燃烧器内的雾化与燃烧[J]. 化工学报, 2015, 66(11): 4597-4602.
Gan Y H , Tong Y , Luo Z B . Electro-spraying and combustion of alcohol in micro-combustor with single electrode[J]. CIESC Journal, 2015, 66(11): 4597-4602.
22 Azizi Z , Rezaeimanesh M , Tohidian T , et al . Dimethyl ether: a review of technologies and production challenges[J]. Chemical Engineering and Processing: Process Intensification, 2014, 82: 150-172.
23 Fleisch T , Basu A , Sills R . Introduction and advancement of a new clean global fuel: the status of DME developments in China and beyond[J]. Journal of Natural Gas Science and Engineering, 2012, 9: 94-107.
24 Oshibe H , Nakamura H , Tekuza T , et al . Stabilized three-stage oxidation of DME/air mixture in a micro flow reactor with a controlled temperature profile[J]. Combustion and Flame, 2010, 157(8): 1572-1580.
25 Jiang L Q , Zhao D Q , Guo C M , et al . Experimental study of a plat-flame micro combustor burning DME for thermoelectric power generation[J]. Energy Conversion and Management, 2011, 52 (1): 596-602.
26 Zhong B J , Yang F , Yang Q T . Catalytic combustion of n-C4H10 and DME in Swiss-roll combustor with porous ceramics[J]. Combustion Science and Technology, 2012, 184 (5): 573-584.
27 Gao J , Hossain A , Matsuoka T , et al . A numerical study on heat-recirculation assisted combustion for small scale jet diffusion flames at near-extinction condition[J]. Combustion and Flame, 2017, 178: 182-194.
28 李星, 蒋利桥, 杨浩林, 等 . 利用平面激光诱导荧光技术及CH滤镜测量微喷管射流火焰OH及CH基元[J]. 光学精密工程, 2017, 25(5): 1119-1125.
Li X , Jiang L Q , Yang H L , et al . Measurement of OH and CH radicals in micro-jet flames using planar laser induced fluorescence and CH filter[J]. Optics and Precision Engineering, 2017, 25(5): 1119-1125.
29 San Diego mechanism 2009/11/01, Chemical-kinetic mechanisms for combustion applications [DB/OL]. Mechanical and Aerospace Engineering (Combustion Research), University of California at San Diego. http: //combustion.ucsd.edu.
30 Bhagatwala A , Luo Z Y , Shen H , et al . Numerical and experimental investigation of turbulent DME jet flames[J]. Proceedings of the Combustion Institute, 2015, 35(2): 1157-1166.
31 Peters N . Laminar diffusion flamelet models in non-premixed turbulent combustion[J]. Progress in Energy and Combustion Science, 1984, 10(3): 319-339.
32 Hu Y , Kurose R . Nonpremixed and premixed flamelets LES of partially premixed spray flames using a two-phase transport equation of progress variable[J]. Combustion and Flame, 2018, 188: 227-242.
33 CHEMKIN-PRO 15131, Reaction Design[CP]. San Diego, 2013.
34 张红光, 石智成, 高翔, 等 . 二甲醚在低到中温的着火延迟特性[J]. 化工学报, 2017, 68(5): 2140-2147.
Zhang H G , Shi Z C , Gao X , et al . Ignition delay characteristics of dimethyl ether under low-to-medium temperature ranges [J]. CIESC Journal, 2017, 68(5): 2140-2147.
35 Zhao Z W , Chaos M , Kazakov A , et al . Thermal decomposition reaction and a comprehensive kinetic model of dimethyl ether[J]. International Journal of Chemical Kinetics, 2008, 40(1): 1-18.
36 Millán-Merino A , Fernádez-Tarrazo E , Sánchez-Sanz M , et al . A multipurpose reduced mechanism for ethanol combustion[J]. Combustion and Flame, 2018, 193: 112-122.
37 Xu H J , Yao C D , Yuan T , et al . Measurements and modeling study of intermediates in ethanol and dimethy ether low-pressure premixed flames using synchrotron photoionization[J]. Combustion and Flame, 2011, 158 (9): 1673-1681.
38 Wang Y L , Veloo P S , Egolfopoulos F N , et al . A comparative study on the extinction characteristics of non-premixed dimethyl ether and ethanol flames[J]. Proceedings of the Combustion Institute, 2011, 33 (1): 1003-1010
39 Ye J J , Medwell P R , Kleinheinz K , et al . Structural differences of ethanol and DME jet flames in a hot diluted coflow[J]. Combustion and Flame, 2018, 192: 473-494.
40 Guo H J , Sun W T , Haas F M , et al . Measurements of H2O2 in low temperature dimethyl ether oxidation[J]. Proceedings of the Combustion Institute, 2013, 34(1): 573-581.
41 Kurimoto N , Brumfield B , Yang X L , et al . Quantitative measurements of HO2/H2O2 and intermediate species in low and intermediate temperature oxidation of dimethyl ether[J]. Proceedings of the Combustion Institute, 2015, 35(1): 457-464.
[1] Yaru FAN, Zhihao CHEN, Yanjie ZHAO, Yoshio UTAKA. Characteristics of spontaneous movement of condensate drop on uniform temperature surface during condensation of binary vapor mixture [J]. CIESC Journal, 2019, 70(4): 1358-1366.
[2] Yan WANG, Lei SHI, Jiaqi FAN, Fei CHEN, Jie YAO, Guangwen XU. High-efficiency catalytic synthesis of polyoxymethoxy dimethylether from sulfolane-treated sulfonic acid resin [J]. CIESC Journal, 2019, 70(1): 116-127.
[3] Zizong WANG, Hongqian LIU, Jiming WANG. Research and optimization of separation technology of methanol to propylene [J]. CIESC Journal, 2019, 70(1): 136-145.
[4] Hong LIU, Yang HE, Chang CAI, Jiuliang GAO, Hongchao YIN. Influence of ethanol and n-butanol additives on spray cooling [J]. CIESC Journal, 2019, 70(1): 65-71.
[5] LI Changhui, MENG Ling, GUI Xia, YUN Zhi. A method of extraction and separation of oridonin [J]. CIESC Journal, 2018, 69(S2): 240-245.
[6] WANG Feng, LIU Yanyun, CHEN Bohong, WANG Guoqiang. Methanol steam reforming for hydrogen production with waste heat recovery-effects of operation parameters [J]. CIESC Journal, 2018, 69(S1): 102-107.
[7] JIN Yanyan, SHAN Yanguang. Evaporation characteristics of sessile ethanol-water mixture droplets [J]. CIESC Journal, 2018, 69(7): 2908-2915.
[8] LÜ Xilei, RUAN Houhang, CHEN Hao, LÜ Xiuyang. Single-step Zr-SBA-15 catalytic conversion of furfural to ethyl levulinate in near-critical ethanol [J]. CIESC Journal, 2018, 69(6): 2488-2495.
[9] SU Jiale, ZHOU Junhu, ZHANG Xing, ZHAO Qingchen, WANG Yefeng, YANG Weijuan. Kinetics of ethanol oxidation over Pt/ZSM-5 catalyst [J]. CIESC Journal, 2018, 69(10): 4269-4275.
[10] LIU Jun, ZHANG Yu, MAO Xiang, ZHANG Zhentao, YANG Luwei. Performance analysis of high-gravity heat pump distillation heat integrated system based on ethanol compression [J]. CIESC Journal, 2018, 69(10): 4342-4352.
[11] CAI Dali, ZHANG Chenxi, HOU Yilin, CHEN Zhaohui, WANG Yao, CUI Yu, WEI Fei. Thermodynamics and topology in methanol conversion process over zeolites [J]. CIESC Journal, 2018, 69(1): 116-127.
[12] ZHU Lin, AI Zhen, WANG Dajun, WANG Weidong, JIN Xin, DING Liang, XU Guangwen. Simulation and comparison of H2S and CO2 separation processes using N-formyl morpholine and polyethylene glycol dimethyl ether solvent [J]. CIESC Journal, 2017, 68(S1): 218-224.
[13] REN Jie, HU Wangwei, YUAN Haikuan, SHEN Lian. Preparation and performance evaluation of Ni2P/SiO2 catalysts for acetic acid hydrogenation to produce ethanol [J]. CIESC Journal, 2017, 68(8): 3082-3088.
[14] WANG Ying, ZHANG Lingbo, GU Xingsheng. Application of modified elitist teaching-learning-based optimization algorithm to process optimization of methanol synthesis [J]. CIESC Journal, 2017, 68(8): 3141-3151.
[15] SHENG Nan, CHEN Minggong, SUN Yimei, RONG Junfeng, WEI Zhouhaosheng, XU Yin. Purification of methanol wastewater by non-thermal plasma combined with packed bed adsorption [J]. CIESC Journal, 2017, 68(6): 2546-2554.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LING Lixia, ZHANG Riguang, WANG Baojun, XIE Kechang. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] LEI Zhigang, LONG Aibin, JIA Meiru, LIU Xueyi. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] SU Haifeng, LIU Huaikun, WANG Fan, LÜXiaoyan, WEN Yanxuan. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] WANG Jianlin, XUE Yaoyu, YU Tao, ZHAO Liqiang. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] SUN Fubao, MAO Zhonggui, ZHANG Jianhua, ZHANG Hongjian, TANG Lei, ZHANG Chengming, ZHANG Jing, ZHAI Fangfang. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] Gao Ruichang, Song Baodong and Yuan Xiaojing( Chemical Engineering Research Center, Tianjin University, Tianjin 300072). LIQUID FLOW DISTRIBUTION IN GAS - LIQUID COUNTER - CONTACTING PACKED COLUMN[J]. , 1999, 50(1): 94 -100 .
[7] Su Yaxin, Luo Zhongyang and Cen Kefa( Institute of Thermal Power Engineering , Zhejiang University , Hangzhou 310027). A STUDY ON THE FINS OF HEAT EXCHANGERS FROM OPTIMIZATION OF ENTROPY GENERATION[J]. , 1999, 50(1): 118 -124 .
[8] Luo Xiaoping(Department of Industrial Equipment and Control Engineering , South China University of Technology, Guangzhou 510641)Deng Xianhe and Deng Songjiu( Research Institute of Chemical Engineering, South China University of Technology, Guangzhou 5106. RESEARCH ON FLOW RESISTANCE OF RING SUPPORT HEAT EXCHANGER WITH LONGITUDINAL FLUID FLOW ON SHELL SIDE[J]. , 1999, 50(1): 130 -135 .
[9] Jin Wenzheng , Gao Guangtu , Qu Yixin and Wang Wenchuan ( College of Chemical Engineering, Beijing Univercity of Chemical Technology, Beijing 100029). MONTE CARLO SIMULATION OF HENRY CONSTANT OF METHANE OR BENZENE IN INFINITE DILUTE AQUEOUS SOLUTIONS[J]. , 1999, 50(2): 174 -184 .
[10]

LI Qingzhao;ZHAO Changsui;CHEN Xiaoping;WU Weifang;LI Yingjie

.

Combustion of pulverized coal in O2/CO2 mixtures and its pore structure development

[J]. , 2008, 59(11): 2891 -2897 .