CIESC Journal ›› 2019, Vol. 70 ›› Issue (S1): 1-14.doi: 10.11949/j.issn.0438-1157.20181484

• Reviews and monographs • Previous Articles     Next Articles

Progress in research and application of microwave in chemical process

Zhaowen ZENG1(),Cheng ZHENG1,2(),Taoyan MAO1,Yuan WEI1,Runhui XIAO1,Siyu PENG1   

  1. 1. Institute of Fine Chemical Engineering, Guangzhou University, Guangzhou 510006, Guangdong, China
    2. Guangzhou Vocational College of Science and Technology, Guangzhou 510550, Guangdong, China
  • Received:2018-12-17 Revised:2019-02-22 Online:2019-03-31 Published:2019-04-26
  • Contact: Cheng ZHENG E-mail:zhaowen_z94@163.com;zhengcheng5512@163.com

Abstract:

Compared with the conventional heating method, microwave-assisted organic syntheses takes the advantages of speeding up the reaction rate, increasing the product yields and changing the selectivity. These phenomena, which cannot be reproduced by conventional heating method, are named microwave nonthermal effects by researchers. But debates about whether nonthermal effects exist or not have continued until now. Up to now, the mechanism of microwave-promoting synthetic reactions is unclear. In this paper, the application progress of microwave technology in organic synthesis and chemical separation process was summarized. The research progress of microwave thermal effect and non-thermal effect in recent years was reviewed. The case analysis and theoretical viewpoint of microwave effect were expounded, and the development of microwave-assisted industrialization was analyzed and prospected.

Key words: microwave chemical application, microwave thermal effects, non-thermal effects, chemical reaction, separation, synthesis

CLC Number: 

  • TQ 025.1

Fig.1

Microwave-assisted synthesis route of quaternary ammonium salts"

Fig.2

Microwave radiation assisted heating of Eucheuma to recover biochar and sugar"

Fig.3

Microwave-assisted synthesis route for oxidation, reduction and condensation reaction"

Fig.4

SEM images of nSiO2(a), MW-nSiO2(b), PANF, PANMW-Thio, and PANCV-Thio fibers(c)"

Fig.5

Principal polarization mechanisms under microwave irradiation[95]"

Fig.6

Graphical illustration of model for solute selective absorption in microwave system (a) [113],temperature distribution for reactor containing Pd/AC catalysts without methylcyclohexane: under microwave heating (MWH) and conventional heating (CH) (b) [112]"

Fig.7

Interaction change between hydroxyl groups within molecular chain of RC excited by microwave driving(a) [129]; schematic diagram of effect of microwave radiation on photodegradation reaction (b) [130]; schematic diagram of interaction between hydrogen bonds in DMSO-ethanol mixture(c) [131]; process of degrading NDMA by microwave radiation and Arrhenius plot(d) [121]"

1 AoW, FuJ, MaoX, et al. Microwave assisted preparation of activated carbon from biomass: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 92: 958-979.
2 魏渊, 郑成, 毛桃嫣, 等. 山嵛酸双酯基有机硅季铵盐的微波合成工艺及性能[J]. 化工进展, 2018, 37(8): 3169-3178.
WeiY, ZhengC, MaoT Y, et al. Microwave synthesis process and properties of behenic acid diester-based silicone quaternary ammonium salt[J]. Chemical Industry and Engineering Progress, 2018, 37(8): 3169-3178.
3 凌慧, 郑成, 毛桃嫣, 等. 响应面法优化微波辅助合成中碳链甘油三酯工艺 [J]. 化工学报, 2016, 67(S2): 231-244.
LingH, ZhengC, MaoT Y, et al. Optimization of microwave-assisted synthesis of medium-chain triacylglycerols using response surface methodology[J]. CIESC Journal, 2016, 67(S2): 231-244.
4 HillmanF, ZimmermanJ M, PaekS M, et al. Rapid microwave-assisted synthesis of hybrid zeolitic-imidazolate frameworks with mixed metals and mixed linkers[J]. Journal of Materials Chemistry A, 2017, 5(13): 6090-6099.
5 XinZ C, LiL, ZhangX L, et al. Microwave-assisted hydrothermal synthesis of chrysanthemum-like Ag/ZnO prismatic nanorods and their photocatalytic properties with multiple modes for dye degradation and hydrogen production[J]. RSC Adv., 2018, 8(11): 6027-6038.
6 MakhadoE, PandeyS, RamontjaJ. Microwave assisted synthesis of xanthan gum-cl-poly (acrylic acid) based-reduced graphene oxide hydrogel composite for adsorption of methylene blue and methyl violet from aqueous solution[J]. Int. J. Biol. Macromol., 2018, 119: 255-269.
7 LiuS Y, MeiL F, LiangX L, et al. Anchoring Fe3O4 nanoparticles on carbon nanotubes for microwave-induced catalytic degradation of antibiotics[J]. ACS Appl. Mater. Interfaces, 2018, 10(35): 29467-29475.
8 ChenW M, ZhangA P, GuZ P, et al. Enhanced degradation of refractory organics in concentrated landfill leachate by Fe0/H2O2 coupled with microwave irradiation[J]. Chem. Eng. J., 2018, 354: 680-691.
9 GedyeR, SmithF, WestawayK, et al. The use of microwave-ovens for rapid organic-synthesis[J]. Tetrahedron Lett., 1986, 27(3): 279-282.
10 De BruynM, BudarinV L, SturmG S J, et al. Subtle microwave-induced overheating effects in an industrial demethylation reaction and their direct use in the development of an innovative microwave reactor[J]. J. Am. Chem. Soc., 2017, 139(15): 5431-5436.
11 徐运欢, 郑成, 林璟, 等. 全氟烃基季铵盐的微波合成[J]. 精细化工, 2014, 31(3): 326-331.
XuY H, ZhengC, LinJ, et al. Microwave synthesis of a perfluoroalkyl-containing quaternary ammonium salt[J]. Fine Chemicals, 2014, 31(3): 326-331.
12 丁寒卫, 薛永强, 崔子祥, 等. 一种多头基有机硅季铵盐的合成及其性能[J]. 化工进展, 2014, 33(2): 479-482.
DingH W, XueY Q, CuiZ X, et al. Synthesis and properties of a kind of organosilicon quaternary ammonium salt with multi-heads in its molecular structure[J]. Chemical Industry and Engineering Progress, 2014, 33(2): 479-482.
13 DangeP N, RathodV K. Equilibrium and thermodynamic parameters for heterogeneous esterification of butyric acid with methanol under microwave irradiation[J]. Resource-Efficient Technologies, 2017, 3(1): 64-70.
14 HasanZ, JunJ W, JhungS H. Sulfonic acid-functionalized MIL-101(Cr): an efficient catalyst for esterification of oleic acid and vapor-phase dehydration of butanol[J]. Chem. Eng. J., 2015, 278: 265-271.
15 NingY, NiuS. Preparation and catalytic performance in esterification of a bamboo-based heterogeneous acid catalyst with microwave assistance[J]. Energy Convers. Manage., 2017, 153: 446-454.
16 LieuT, YusupS, MoniruzzamanM. Kinetic study on microwave-assisted esterification of free fatty acids derived from Ceiba pentandra seed oil[J]. Bioresour. Technol., 2016, 211: 248-256.
17 KongP S, ArouaM K, DaudW M A W, et al. Enhanced microwave catalytic-esterification of industrial grade glycerol over Brønsted-based methane sulfonic acid in production of biolubricant[J]. Process Saf. Environ. Prot., 2016, 104: 323-333.
18 MaL L, LvE M, DuL X, et al. Statistical modeling/optimization and process intensification of microwave-assisted acidified oil esterification[J]. Energy Convers. Manage., 2016, 122: 411-418.
19 JermoloviciusL A, CantagessoL C M, do NascimentoR B, et al. Microwave fast-tracking biodiesel production[J]. Chem. Eng. Process., 2017, 122: 380-388.
20 LiX, CaoJ, BaiX P, et al. Chemical composition and thermal properties of Tilapia oil extracted by different methods[J]. Int. J. Food Prop., 2018, 21(1): 1575-1585.
21 TehY Y, LeeK T, ChenW H, et al. Dilute sulfuric acid hydrolysis of red macroalgae Eucheuma denticulatum with microwave-assisted heating for biochar production and sugar recovery[J]. Bioresour. Technol., 2017, 246: 20-27.
22 FanJ, SantomauroF, BudarinV L, et al. The additive free microwave hydrolysis of lignocellulosic biomass for fermentation to high value products[J]. J. Cleaner Prod., 2018, 198: 776-784.
23 LinY C, ShangdiarS, ChenS C, et al. Microwave irradiation with dilute acid hydrolysis applied to enhance the saccharification rate of water hyacinth (Eichhornia crassipes)[J]. Renewable Energy, 2018, 125: 511-517.
24 TsubakiS, OonoK, UedaT, et al. Microwave-assisted hydrolysis of polysaccharides over polyoxometalate clusters[J]. Bioresour. Technol., 2013, 144: 67-73.
25 ChenJ Y, DingS Y, JiY M, et al. Microwave-enhanced hydrolysis of poultry feather to produce amino acid[J]. Chem. Eng. Process., 2015, 87: 104-109.
26 LeeY S, PhangL Y, AhmadS A, et al. Microwave-alkali treatment of chicken feathers for protein hydrolysate production[J]. Waste and Biomass Valorization, 2016, 7(5): 1147-1157.
27 WangS, YangZ, PengN, et al. Optimization of ionic liquids-based microwave-assisted hydrolysis of puerarin and daidzein derivatives from Radix Puerariae Lobatae extract[J]. Food Chemistry, 2018, 256: 149-155.
28 RomanoP N, De AlmeidaJ M A R, CarvalhoY, et al. Microwave-assisted selective hydrogenation of furfural to furfuryl alcohol employing a green and noble metal-free copper catalyst[J]. Chemsuschem, 2016, 9(24): 3387-3392.
29 Sánchez-RodríguezE P, Fragoso-MedinaA J, Ramírez-MenesesE, et al. [N,P]-pyrrole-phosphine ligand: an efficient and robust ligand for Ru-catalyzed transfer hydrogenation microwave-assisted reactions[J]. Catal. Commun., 2018, 115: 49-54.
30 KeenanC S, MurphreeS S. Rapid and convenient conversion of nitroarenes to anilines under microwave conditions using nonprecious metals in mildly acidic medium[J]. Synth. Commun., 2017, 47(11): 1085-1089.
31 DattaK J, RathiA K, KumarP, et al. Synthesis of flower-like magnetite nanoassembly: application in the efficient reduction of nitroarenes[J]. Scientific Reports, 2017, 7: 11585.
32 PeyrotC, VivesT, LegentilL, et al. Microwave-assisted reduction of nitroarenes by aminothiophenol/dithiotreitol[J]. Chemistryselect, 2017, 2(18): 5214-5217.
33 TussingS, ParadiesJ. Microwave-assisted FLP-catalyzed hydrogenations[J]. Dalton Trans., 2016, 45(14): 6124-6128.
34 VoiryD, YangJ, KupferbergJ, et al. High-quality graphene via microwave reduction of solution-exfoliated graphene oxide[J]. Science, 2016, 353(6306): 1413-1416.
35 ChabanV V, PrezhdoO V. Microwave reduction of graphene oxide rationalized by reactive molecular dynamics[J]. Nanoscale, 2017, 9(11): 4024-4033.
36 KokelA, SchaferC, TorokB. Application of microwave-assisted heterogeneous catalysis in sustainable synthesis design[J]. Green Chemistry, 2017, 19(16): 3729-3751.
37 MartinsN M R, PombeiroA J L, MartinsL M D R S. A green methodology for the selective catalytic oxidation of styrene by magnetic metal-transition ferrite nanoparticles[J]. Catal. Commun., 2018, 116: 10-15.
38 RibeiroA P C, MartinsL M D R S, CarabineiroS A C, et al. Heterogenized C-scorpionate iron(Ⅱ) complex on nanostructured carbon materials as recyclable catalysts for microwave-assisted oxidation reactions [J]. Chemcatchem, 2018, 10(8): 1821-1828.
39 HamzehlouiaS, ShabanianJ, LatifiM, et al. Effect of microwave heating on the performance of catalytic oxidation of n-butane in a gas-solid fluidized bed reactor[J]. Chem. Eng. Sci., 2018, 192: 1177-1188.
40 PujolM D, NavarroL. Oxidation of aldehydes and alcohols to carboxylic acids using NaClO under microwave irradiation or classical heating without a catalyst[J]. Lett. Org. Chem., 2018, 15(6): 534-539.
41 MauryaM R, SainiN, AvecillaF. Liquid phase versus microwave assisted selective oxidation of volatile organic compounds involving dioxidomolybdenum(Ⅵ) and oxidoperoxidomolybdenum(Ⅵ) complexes as catalysts in the presence/absence of an N-based additive[J]. Polyhedron, 2015, 90: 221-232.
42 ManginF, PrinsenP, YepezA, et al. Microwave assisted benzyl alcohol oxidation using iron particles on furfuryl alcohol derived supports[J]. Catal. Commun., 2018, 104: 67-70.
43 CaporasoM, CravottoG, GeorgakopoulosS, et al. Pd/C-catalyzed aerobic oxidative esterification of alcohols and aldehydes: a highly efficient microwave-assisted green protocol[J]. Beilstein J. Org. Chem., 2014, 10: 1454-1461.
44 HandayaniS, BudimarwantiC, HaryadiW. Microwave-assisted organic reactions: eco-friendly synthesis of dibenzylidenecyclohexanone derivatives via crossed aldol condensation[J]. Indones. J. Chem., 2017, 17(2): 336-341.
45 HandayaniS, BudimarwantiC, HaryadiW. Novel synthesis of substituted benzylidenecyclohexanone by microwave assisted organic synthesis[C]//International Conference on Chemistry, Chemical Process and Engineering (IC3PE). Indonesia: Yogyakarta, 2017.
46 ZhangA R, XiaoH Y, PengC C, et al. Microwave-assisted synthesis of novel julolidinyl-based nonlinear optical chromophores with enhanced electro-optic activity[J]. RSC Adv., 2014, 4(110): 65088-65097.
47 於祥, 陈娅芳. 微波辅助合成5-芳亚甲基-2,3-二苯基噻唑-4-酮类衍生物[J]. 化学通报, 2018, 81(7): 657-659.
YuX, ChenY F. Microwave-assisted synthesis of 5-arylienne-2,3-diphenylthiazolidin-4-one derivatives[J]. Chemistry, 2018, 81(7): 657-659.
48 MorenoL M, QuirogaJ, AboniaR, et al. Synthesis of new 1,3,5-triazine-based 2-pyrazolines as potential anticancer agents[J]. Molecules, 2018, 23(8): 1956.
49 UpadhyayS, TripathiA, PaliwalS, et al. Facile one-pot synthesis methodology for nitrogen-containing heterocyclic derivatives of 3,5-disubstituted 4,5-dihydro-1h-pyrazole, their biological evaluation and molecular docking studies[J]. Pharm. Chem. J., 2017, 51(7): 564-575.
50 李洪, 崔俊杰, 李鑫钢, 等. 微波场强化化工分离过程研究进展[J]. 化工进展, 2016, 35(12): 3735-3745.
LiH, CuiJ J, LiX G, et al. Recent developments in microwave-assisted chemical separation processes[J]. Chemical Industry and Engineering Progress, 2016, 35(12): 3735-3745.
51 DahmouneF, NayakB, MoussiK, et al. Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves[J]. Food Chemistry, 2015, 166: 585-595.
52 EkezieF G C, SunD W, ChengJ H. Acceleration of microwave-assisted extraction processes of food components by integrating technologies and applying emerging solvents: a review of latest developments[J]. Trends Food Sci. Technol., 2017, 67: 160-172.
53 AbediA S, RismanchiM, ShahdoostkhanyM, et al. Microwave-assisted extraction of Nigella sativa L. essential oil and evaluation of its antioxidant activity[J]. Journal of Food Science and Technology-Mysore, 2017, 54(12): 3779-3790.
54 TongkhamN, JuntasalayB, LasunonP, et al. Dragon fruit peel pectin: microwave-assisted extraction and fuzzy assessment[J]. Agriculture and Natural Resources, 2017, 51(4): 262-267.
55 HosseiniS S, KhodaiyanF, YarmandM S. Optimization of microwave assisted extraction of pectin from sour orange peel and its physicochemical properties[J]. Carbohydr. Polym., 2016, 140: 59-65.
56 KeisandokhtS, HaddadN, GariepyY, et al. Screening the microwave-assisted extraction of hydrocolloids from Ocimum basilicum L. seeds as a novel extraction technique compared with conventional heating-stirring extraction[J]. Food Hydrocolloids, 2018, 74: 11-22.
57 OlalereO A, AbdurahmanN H, AlaraO R, et al. Parametric optimization of microwave reflux extraction of spice oleoresin from white pepper (Piper nigrum)[J]. J. Anal. Sci. Technol., 2017, 8(1): 8.
58 AlbuquerqueB R, PrietoM A, BarreiroM F, et al. Catechin-based extract optimization obtained from Arbutus unedo L. fruits using maceration/microwave/ultrasound extraction techniques[J]. Ind. Crops Prod., 2017, 95: 404-415.
59 XuJ K, HouH J, HuJ P, et al. Optimized microwave extraction, characterization and antioxidant capacity of biological polysaccharides from Eucommia ulmoides oliver leaf[J]. Scientific Reports, 2018, 8: 6561.
60 KovacevicD B, MarasM, BarbaF J, et al. Innovative technologies for the recovery of phytochemicals from Stevia rebaudiana Bertoni leaves: a review[J]. Food Chemistry, 2018, 268: 513-521.
61 PutnikP, KovacevicD B, PenicM, et al. Microwave-assisted extraction (MAE) of dalmatian sage leaves for the optimal yield of polyphenols: HPLC-DAD identification and quantification[J]. Food Analytical Methods, 2016, 9(8): 2385-2394.
62 LefsihK, GiacomazzaD, DahmouneF, et al. Pectin from Opuntia ficus indica: optimization of microwave-assisted extraction and preliminary characterization[J]. Food Chemistry, 2017, 221: 91-99.
63 NigarH, Garcia-BañosB, Peñaranda-FoixF L, et al. Amine-functionalized mesoporous silica: a material capable of CO2 adsorption and fast regeneration by microwave heating[J]. AIChE Journal, 2016, 62(2): 547-555.
64 DuC F, XueY T, WuZ S, et al. Microwave-assisted one-step preparation of macadamia nut shell-based activated carbon for efficient adsorption of Reactive Blue[J]. New J. Chem., 2017, 41(24): 15373-15383.
65 WangL, YanW, HeC, et al. Microwave-assisted preparation of nitrogen-doped biochars by ammonium acetate activation for adsorption of acid red 18[J]. Appl. Surf. Sci., 2018, 433: 222-231.
66 LiY, TsendN, LiT, et al. Microwave assisted hydrothermal preparation of rice straw hydrochars for adsorption of organics and heavy metals[J]. Bioresour. Technol., 2019, 273: 136-143.
67 FengZ X, OdeliusK, RajaraoG K, et al. Microwave carbonized cellulose for trace pharmaceutical adsorption[J]. Chem. Eng. J., 2018, 346: 557-566.
68 HuangA S, WanL L, CaroJ. Microwave-assisted synthesis of well-shaped UiO-66-NH2 with high CO2 adsorption capacity[J]. Mater. Res. Bull., 2018, 98: 308-313.
69 PeresE C, SlavieroJ C, CunhaA M, et al. Microwave synthesis of silica nanoparticles and its application for methylene blue adsorption[J]. J. Environ. Chem. Eng., 2018, 6(1): 649-659.
70 DengS, ZhangG S, LiangS, et al. Microwave assisted preparation of thio-functionalized polyacrylonitrile fiber for the selective and enhanced adsorption of mercury and cadmium from water[J]. ACS Sustainable Chem. Eng., 2017, 5(7): 6054-6063.
71 PanR R, FanF L, LiY, et al. Microwave regeneration of phenol-loaded activated carbons obtained from Arundo donax and waste fiberboard[J]. RSC Adv., 2016, 6(39): 32960-32966.
72 ShariatyP, LashakiM J, HashishoZ, et al. Effect of ETS-10 ion exchange on its dielectric properties and adsorption/microwave regeneration[J]. Sep. Purif. Technol., 2017, 179: 420-427.
73 FooK Y. Effect of microwave regeneration on the textural network, surface chemistry and adsorptive property of the agricultural waste based activated carbons[J]. Process Saf. Environ. Prot., 2018, 116: 461-467.
74 GeX Y, WuZ L, CravottoG, et al. Cork wastewater purification in a cooperative flocculation/adsorption process with microwave-regenerated activated carbon[J]. J. Hazard. Mater., 2018, 360: 412-419.
75 WangZ J, MaX T, WeiJ P, et al. Microwave irradiation s effect on promoting coalbed methane desorption and analysis of desorption kinetics[J]. Fuel, 2018, 222: 56-63.
76 CzechowskiJ, MajchrowiczI. Microwave and conventional treatment of low-cement high-alumina castables with different water to cement ratios(Ⅰ): Drying[J]. Ceram. Int., 2018, 44(1): 65-70.
77 ZielinskaM, SadowskiP, BlaszczakW. Combined hot air convective drying and microwave-vacuum drying of blueberries (Vaccinium corymbosum L.): drying kinetics and quality characteristics[J]. Drying Technol., 2016, 34(6): 665-684.
78 SongZ L, JingC M, YaoL S, et al. Coal slime hot air/microwave combined drying characteristics and energy analysis[J]. Fuel Process. Technol., 2017, 156: 491-499.
79 WangW D, XinF W, TuY N, et al. Pore structure development in Xilingol lignite under microwave irradiation[J]. J. Energy Inst., 2018, 91(1): 75-86.
80 ZielinskaM, RopelewskaE, MarkowskiM. Thermophysical properties of raw, hot-air and microwave-vacuum dried cranberry fruits (Vaccinium macrocarpon)[J]. LWT-Food Science and Technology, 2017, 85: 204-211.
81 ZhaoY T, JiangY J, ZhengB D, et al. Influence of microwave vacuum drying on glass transition temperature, gelatinization temperature, physical and chemical qualities of lotus seeds[J]. Food Chemistry, 2017, 228: 167-176.
82 MonteiroR L, LinkJ V, TribuziG, et al. Microwave vacuum drying and multi-flash drying of pumpkin slices[J]. J. Food Eng., 2018, 232: 1-10.
83 MonteiroR L, LinkJ V, TribuziG, et al. Effect of multi-flash drying and microwave vacuum drying on the microstructure and texture of pumpkin slices[J]. LWT-Food Science and Technology, 2018, 96: 612-619.
84 KipcakA S. Microwave drying kinetics of mussels (Mytilus edulis)[J]. Res. Chem. Intermed., 2017, 43(3): 1429-1445.
85 ChahbaniA, FakhfakhN, BaltiM A, et al. Microwave drying effects on drying kinetics, bioactive compounds and antioxidant activity of green peas (Pisum sativum L.)[J]. Food Biosci., 2018, 25: 32-38.
86 SurendharA, SivasubramanianV, VidhyeswariD, et al. Energy and exergy analysis, drying kinetics, modeling and quality parameters of microwave-dried turmeric slices[J].J. Therm. Anal. Calorim., 2018, 10.1007/s10973-018-7791-9.
87 Al-AliM, PeriasamyS, ParthasarathyR. Novel drying of formulated naproxen sodium using microwave radiation: characterization and energy comparison[J]. Powder Technol., 2018, 334: 143-150.
88 LiY H, QiY R, WuZ F, et al. Comparative study of microwave-vacuum and vacuum drying on the drying characteristics, dissolution, physicochemical properties, and antioxidant capacity of Scutellaria extract powder[J]. Powder Technol., 2017, 317: 430-437.
89 KimH S, KimJ H. Kinetics and thermodynamics of microwave-assisted drying of paclitaxel for removal of residual methylene chloride[J]. Process Biochem., 2017, 56: 163-170.
90 MingosD M P, BaghurstD R. Tilden Lecture. Applications of microwave dielectric heating effects to synthetic problems in chemistry[J]. Cheminform, 1991, 22(36): 301-301.
91 张力冉. 微波合成聚羧酸超塑化剂性能/热-非热效应研究[D]. 北京: 中国矿业大学(北京), 2015.
ZhangL R. Study on the performance/thermal-athermal effect of microwave synthesis of polycarboxylic ether superplasticizer[D]. Beijing: China University of Mining & Technology(Beijing), 2015.
92 李昕皓. 微波加速有机反应的本质研究[D]. 北京: 北京化工大学, 2016.
LiX H. Origin of the acceleration of organic reactions under microwave irradiation[D]. Beijing : Beijing University of Chemical Technology, 2016.
93 KappeC O, PieberB, DallingerD. Microwave effects in organic synthesis: myth or reality?[J]. Angew. Chem., Int. Ed., 2013, 52(4): 1088-1094.
94 徐文涛. 微波催化转化NO及微波效应的研究[D]. 湘潭: 湘潭大学, 2016.
XuW T. Study on microwave catalytic conversion of nitric oxide and microwave effects[D]. Xiangtan: Xiangtan University, 2016.
95 PrietoP, de la HozA, Díaz-OrtizA, et al. Understanding MAOS through computational chemistry[J]. Chem. Soc. Rev., 2017, 46(2): 431-451.
96 BorgesI, SilvaA M, Modesto-CostaL. Microwave effects on NiMoS and CoMoS single-sheet catalysts[J]. J. Mol. Model., 2018, 24(6): 128.
97 CabelloG, DavoglioR A, CuadradoL G. The role of small nanoparticles on the formation of hot spots under microwave-assisted hydrothermal heating[J]. Inorganic Chemistry, 2018, 57(12): 7252-7258.
98 FerrariA, HuntJ, StiegmanA, et al. Microwave-assisted superheating and/or microwave-specific superboiling (nucleation-limited boiling) of liquids occurs under certain conditions but is mitigated by stirring[J]. Molecules, 2015, 20(12): 21672-21680.
99 AsakumaY, MatsumuraS, SaptoroA. In-situ observation of nanoparticle formation under different power of microwave irradiation[J]. Cryst. Res. Technol., 2017, 52(9): 1700108.
100 AsakumaY, MatsumuraS, SaptoroA. Method for suppressing superheating behavior during microwave assisted nanoparticle formation by ethylene glycol addition[J]. Chemical Engineering and Processing - Process Intensification, 2018, 132: 11-15.
101 YangZ Y, YiH H, TangX L, et al. Potential demonstrations of “hot spots” presence by adsorption-desorption of toluene vapor onto granular activated carbon under microwave radiation[J]. Chem. Eng. J., 2017, 319: 191-199.
102 WangW L, WangB, SunJ, et al. Numerical simulation of hot-spot effects in microwave heating due to the existence of strong microwave-absorbing media[J]. RSC Adv., 2016, 6(58): 52974-52981.
103 房奎圳, 张力冉, 王栋民, 等. 微波有机合成及在混凝土减水剂制备中的应用研究进展[J]. 化工进展, 2018, 37(4): 1575-1583.
FangK Z, ZhangL R, WangD M, et al. Microwave organic synthesis and its application in concrete water-reducing agent[J]. Chemical Industry and Engineering Progress, 2018, 37(4): 1575-1583.
104 GutmannB, SchwanA M, ReichartB, et al. Activation and deactivation of a chemical transformation by an electromagnetic field: evidence for specific microwave effects in the formation of grignard reagents[J]. Angew. Chem., Int. Ed., 2011, 50(33): 7636-7640.
105 LuoH, BaoL W, WangH, et al. Microwave-assisted in-situ elimination of primary tars over biochar: low temperature behaviours and mechanistic insights[J]. Bioresour. Technol., 2018, 267: 333-340.
106 HorikoshiS, OsawaA, AbeM, et al. On the generation of hot-spots by microwave electric and magnetic fields and their impact on a microwave-assisted heterogeneous reaction in the presence of metallic Pd nanoparticles on an activated carbon support[J]. J. Phys. Chem. C, 2011, 115(46): 23030-23035.
107 HorikoshiS, KamataM, MitaniT, et al. Control of microwave-generated hot spots. 6. generation of hot spots in dispersed catalyst particulates and factors that affect catalyzed organic syntheses in heterogeneous media[J]. Ind. Eng. Chem. Res., 2014, 53(39): 14941-14947.
108 LiX, XuJ. Determination on temperature gradient of different polar reactants in reaction mixture under microwave irradiation with molecular probe[J]. Tetrahedron, 2016, 72(35): 5515-5520.
109 KhalifeA, PathakU, RichertR. Heating liquid dielectrics by time dependent fields[J]. Eur. Phys. J. B, 2011, 83(4): 429-435.
110 HuangW, RichertR. Dynamics of glass-forming liquids( ): Microwave heating in slow motion[J]. J. Chem. Phys., 2009, 130(19): 194509.
111 HuangW, RichertR. The physics of heating by time-dependent fields: microwaves and water revisited[J]. J. Phys. Chem. B, 2008, 112(32): 9909-9913.
112 HorikoshiS, KamataM, SumiT, et al. Selective heating of Pd/AC catalyst in heterogeneous systems for the microwave-assisted continuous hydrogen evolution from organic hydrides: temperature distribution in the fixed-bed reactor[J]. Int. J. Hydrogen Energy, 2016, 41(28): 12029-12037.
113 RosanaM R, HuntJ, FerrariA, et al. Microwave-specific acceleration of a Friedel-Crafts reaction: evidence for selective heating in homogeneous solution[J]. J. Org. Chem., 2014, 79(16): 7437-7450.
114 DallingerD, IrfanM, SuljanovicA, et al. An investigation of wall effects in microwave-assisted ring-closing metathesis and cyclotrimerization reactions[J]. J. Org. Chem., 2010, 75(15): 5278-5288.
115 ChenC C, ReddyP M, DeviC S, et al. Study of microwave effects on the lipase-catalyzed hydrolysis[J]. Enzyme Microb. Technol., 2016, 82: 164-172.
116 KappeC O. Unraveling the mysteries of microwave chemistry using silicon carbide reactor technology[J]. Acc. Chem. Res., 2013, 46(7): 1579-1587.
117 HorikoshiS, WatanabeT, NaritaA, et al. The electromagnetic wave energy effect(s) in microwave-assisted organic syntheses (MAOS)[J]. Scientific Reports, 2018, 8: 5151.
118 DudleyG B, RichertR, StiegmanA E. On the existence of and mechanism for microwave-specific reaction rate enhancement[J]. Chemical Science, 2015, 6(4): 2144-2152.
119 王陆瑶, 孟东, 李璐. “热效应”或“非热效应”——微波加热反应机理探讨[J]. 化学通报, 2013, 76(8): 698-703.
WangL Y, MengD, LiL. Thermal or nonthermal microwave effects——the mechanism of microwave heating[J]. Chemistry, 2013, 76(8): 698-703.
120 DudleyG B, StiegmanA E. Changing perspectives on the strategic use of microwave heating in organic synthesis[J]. Chem. Rec., 2018, 18(3): 381-389.
121 HuY N, HeY Z, ChengH F. Microwave-induced degradation of N-nitrosodimethylamine (NDMA) sorbed in zeolites: effect of mineral surface chemistry and non-thermal effect of microwave[J]. J. Cleaner Prod., 2018, 174: 1224-1233.
122 NushiroK, KikuchiS, YamadaT. Extraordinary microwave effect on atropo-enantioselective catalytic reduction of biaryl lactones[J]. Chem. Lett., 2013, 42(2): 165-167.
123 TashimaS, NushiroK, SaitoK, et al. Microwave specific effect on catalytic atropo-enantioselective ring-opening reaction of biaryl lactones[J]. Bull. Chem. Soc. Jpn., 2016, 89(7): 833-835.
124 NushiroK, KikuchiS, YamadaT. Microwave effect on catalytic enantioselective Claisen rearrangement[J]. Chem. Commun., 2013, 49(75): 8371-8373.
125 HorikoshiS, WatanabeT, KamataM, et al. Microwave-assisted organic syntheses: microwave effect on intramolecular reactions — the Claisen rearrangement of allylphenyl ether and 1-allyloxy-4-methoxybenzene[J]. RSC Adv., 2015, 5(110): 90272-90280.
126 KapranovS V, KouzaevG A. Effects of microwave electric fields on the translational diffusion of dipolar molecules in surface potential: a simulation study[J]. Surface Science, 2018, 667: 66-78.
127 KishimotoF, ImaiT, FujiiS, et al. Microwave-enhanced photocatalysis on CdS quantum dots—evidence of acceleration of photoinduced electron transfer[J]. Scientific Reports, 2015, 5: 11308
128 NishimotoY, YazawaS, KiyokawaK, et al. Effect of functional groups in organic chlorides on radical reduction with hydrostannane under microwave irradiation[J]. Chem. Lett., 2017, 46(8): 1116-1118.
129 ZhaiC K, TengN, PanB H, et al. Revealing the importance of non-thermal effect to strengthen hydrolysis of cellulose by synchronous cooling assisted microwave driving[J]. Carbohydr. Polym., 2018, 197: 414-421.
130 HorikoshiS, SerponeN. On the influence of the microwaves thermal and non-thermal effects in titania photoassisted reactions[J]. Catal. Today, 2014, 224: 225-235.
131 ZhouM, ChengK, SunH R, et al. Investigation of nonlinear output-input microwave power of DMSO-ethanol mixture by molecular dynamics simulation[J]. Scientific Reports, 2018, 8: 7186.
132 ZhengJ L, TolvanenP, TaoukB, et al. Synthesis of carbonated vegetable oils: investigation of microwave effect in a pressurized continuous-flow recycle batch reactor[J]. Chem. Eng. Res. Des., 2018, 132: 9-18.
133 LeT, JuS, KoppalaS, et al. Kinetics study of microwave enhanced reactions between diasporic bauxite and alkali solution[J]. J. Alloys Compd., 2018, 749: 652-663.
134 郑成, 毛桃嫣, 卫云路, 等. 沸腾状态下十二烷基甲基二羟乙基溴化铵微波合成的动力学研究[J]. 精细化工, 2009, 26(2): 131-135.
ZhengC, MaoT Y, WeiY L, et al. Study on the kinetics of the synthesis of dodecyl methyl dihydroxyethyl ammonium bromide[J]. Fine Chemicals, 2009, 26(2): 131-135.
135 RosanaM R, TaoY C, StiegmanA E, et al. On the rational design of microwave-actuated organic reactions[J]. Chemical Science, 2012, 3(4): 1240-1244.
136 DudleyG B, StiegmanA E, RosanaM R. Correspondence on microwave effects in organic synthesis[J]. Angew. Chem., Int. Ed., 2013, 52(31): 7918-7923.
137 KappeC O. Reply to the correspondence on microwave effects in organic synthesis[J]. Angew. Chem., Int. Ed., 2013, 52(31): 7924-7928.
138 AnoT, KishimotoF, SasakiR, et al. In situ temperature measurements of reaction spaces under microwave irradiation using photoluminescent probes[J]. Phys. Chem. Chem. Phys., 2016, 18(19): 13173-13179.
139 郑成, 林晓涛, 魏渊, 等. 季铵盐表面活性剂微波合成放大工艺研究[J]. 广州大学学报(自然科学版), 2018, 17(1): 40-46.
ZhengC, LinX T, WeiY, et al. Study on the pilot synthesis of quaternary ammonium salt microwave[J]. Journal of Guangzhou University( Natural Science Edition), 2018, 17(1): 40-46.
[1] Xingpeng LIU, Dandan YAN. Spectrum changes of electromagnetic pluses in chemical reactions [J]. CIESC Journal, 2019, 70(S1): 177-181.
[2] Yucai ZENG, Xiaoling LIU, Qifeng LIANG, Jianquan LYU. One-pot synthesis of 2-amino-4-aryl-3-cyano-4H-benzochromene derivatives catalyzed by K2CO3 under microwave irradiation [J]. CIESC Journal, 2019, 70(S1): 110-114.
[3] Ning QIN, Qing MIN, Kaiyuan SHAO, Wenxiang HU. Synthesis of 3-methyl-benzidine hydrochloride [J]. CIESC Journal, 2019, 70(S1): 242-247.
[4] Siyu PENG, Cheng ZHENG, Taoyan MAO, Yuan WEI, Huafeng SONG. Microwave synthesis and properties of dioctadecyl tetrahydroxyethyl dibromopropane diammonium [J]. CIESC Journal, 2019, 70(S1): 202-210.
[5] Yanrao CHEN, Taoyan MAO, Cheng ZHENG. Microwave synthesis and properties of dioctadecyldihydroxyethyl ammonium bromide [J]. CIESC Journal, 2019, 70(S1): 226-234.
[6] Jihai DUAN, Shuaibiao HUANG, Chang GAO, Aqiang CHEN, Qingshan HUANG. Influence of slit structure in hydrocyclone conical section on solid-liquid separation performance [J]. CIESC Journal, 2019, 70(5): 1823-1831.
[7] Shuai REN, Xing LI, Jing ZHANG, Xiaohan WANG, Daiqing ZHAO. Investigation on combustion characteristics of ethanol and dimethyl ether micro-jet flames [J]. CIESC Journal, 2019, 70(5): 1973-1980.
[8] Yinhu KANG, Pengyuan ZHANG, Congcong LIU, Jiangze MA, Xiaofeng LU. Extinction mechanism of ethylene opposed-flow diffusion flame using chemical explosive mode analysis method [J]. CIESC Journal, 2019, 70(4): 1644-1651.
[9] Qiang GAO, Hong LYU, Fan XIONG, Fei CHEN, Zeheng YANG, Weixin ZHANG. Preparation of LiFePO4/C plate cathode materials and their electrochemical properties [J]. CIESC Journal, 2019, 70(4): 1628-1634.
[10] Shaojuan ZENG, Dawei SHANG, Min YU, Hao CHEN, Haifeng DONG, Xiangping ZHANG. Applications and perspectives of NH3 separation and recovery with ionic liquids [J]. CIESC Journal, 2019, 70(3): 791-800.
[11] Lei WANG, Guiying FANG, Qingyuan YANG. Performance of metal-organic frameworks for CO2 capture from large-scale computational screening [J]. CIESC Journal, 2019, 70(3): 1135-1143.
[12] Yaowu WANG, Jianping PENG, Yuezhong DI, Pengcheng HAO. Mechanism of deterioration for dry barrier material in aluminum electrolysis cells [J]. CIESC Journal, 2019, 70(3): 1035-1041.
[13] Hanlin WANG, Deqiang WANG, Kai WANG, Guangsheng LUO. Continuous synthesis of anisole in microreactor system [J]. CIESC Journal, 2019, 70(3): 922-928.
[14] Tao TIAN, Bing LIU, Meisheng SHI, Yaxiong AN, Jun MA, Yanjun ZHANG, Xinxi XU, Donghui ZHANG. Experiment and simulation of PSA process for small oxygen generator with two adsorption beds [J]. CIESC Journal, 2019, 70(3): 969-978.
[15] Feifei YE, Baodan ZHANG, Haibo JIN, Xiaoyan GUO, Guangxiang HE, Rongyue ZHANG, Qingyang GU, Suohe YANG. Preparation of BaSO4 nanoparticles in microchannel reactor and its application in multifunctional layers of medical slices [J]. CIESC Journal, 2019, 70(3): 1179-1187.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LING Lixia, ZHANG Riguang, WANG Baojun, XIE Kechang. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] LEI Zhigang, LONG Aibin, JIA Meiru, LIU Xueyi. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] SU Haifeng, LIU Huaikun, WANG Fan, LÜXiaoyan, WEN Yanxuan. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] WANG Jianlin, XUE Yaoyu, YU Tao, ZHAO Liqiang. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] SUN Fubao, MAO Zhonggui, ZHANG Jianhua, ZHANG Hongjian, TANG Lei, ZHANG Chengming, ZHANG Jing, ZHAI Fangfang. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] Gao Ruichang, Song Baodong and Yuan Xiaojing( Chemical Engineering Research Center, Tianjin University, Tianjin 300072). LIQUID FLOW DISTRIBUTION IN GAS - LIQUID COUNTER - CONTACTING PACKED COLUMN[J]. , 1999, 50(1): 94 -100 .
[7] Su Yaxin, Luo Zhongyang and Cen Kefa( Institute of Thermal Power Engineering , Zhejiang University , Hangzhou 310027). A STUDY ON THE FINS OF HEAT EXCHANGERS FROM OPTIMIZATION OF ENTROPY GENERATION[J]. , 1999, 50(1): 118 -124 .
[8] Luo Xiaoping(Department of Industrial Equipment and Control Engineering , South China University of Technology, Guangzhou 510641)Deng Xianhe and Deng Songjiu( Research Institute of Chemical Engineering, South China University of Technology, Guangzhou 5106. RESEARCH ON FLOW RESISTANCE OF RING SUPPORT HEAT EXCHANGER WITH LONGITUDINAL FLUID FLOW ON SHELL SIDE[J]. , 1999, 50(1): 130 -135 .
[9] Jin Wenzheng , Gao Guangtu , Qu Yixin and Wang Wenchuan ( College of Chemical Engineering, Beijing Univercity of Chemical Technology, Beijing 100029). MONTE CARLO SIMULATION OF HENRY CONSTANT OF METHANE OR BENZENE IN INFINITE DILUTE AQUEOUS SOLUTIONS[J]. , 1999, 50(2): 174 -184 .
[10]

LI Qingzhao;ZHAO Changsui;CHEN Xiaoping;WU Weifang;LI Yingjie

.

Combustion of pulverized coal in O2/CO2 mixtures and its pore structure development

[J]. , 2008, 59(11): 2891 -2897 .