CIESC Journal ›› 2019, Vol. 70 ›› Issue (4): 1390-1400.doi: 10.11949/j.issn.0438-1157.20181426

• Catalysis, kinetics and reactors • Previous Articles     Next Articles

Mechanistic study on catalytic conversion of glucose into low carbon glycols over nickel promoted tungsten carbide catalyst

Lianxia HOU(),Zhaoping YUAN,Hongchang QIAO,Jinghong ZHOU(),Xinggui ZHOU   

  1. State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
  • Received:2018-11-29 Revised:2019-01-22 Online:2019-04-05 Published:2019-04-17
  • Contact: Jinghong ZHOU E-mail:958570030@qq.com;jhzhou@ecust.edu.cn

Abstract:

The HPLC and LC-MS, GC-MS and other analytical methods were used to qualitatively and quantitatively analyze the intermediates and final products of Ni/W2C catalyzed glucose hydrotreating under different process conditions. Ni-W2C was recently reported as a promising catalyst for the hydrogenolysis of cellulose or glucose to EG with the highest yield of 75%, yet this was achieved at the substrate concentration less than 1% because the concentrated substrate will lead to coking. This meant low productivity and high cost for commercial production, thus hinder this promising process from industry application. Therefore, insights into the reaction network to elucidate the coking mechanism and to optimize the process are needed. In this work, the mechanistic study on the glucose conversion, especially with the concentrated glucose substrate, over 2%Ni-30%W2C/AC was systematically carried out. The reaction parameters including temperature, initial glucose concentration and H2 pressure have been investigated and the results, in combination with the intermediate analysis by LC, LCMS and GCMS, showed that three parallel reaction pathways including retro-aldol reaction, isomerization and hydrogenation were involved in the reaction. C2 product (EG) was originated from glucose hydrogenolysis while the C3 products (1,2-PG and glycerol) were originated from fructose hydrogenolysis, and the dehydration of fructose led to 5-HMF and finally to coke in concentrated glucose conversion. Based on these understanding, the ratio of C3 products to C2, on the one hand, has been manipulated by tuning of isomerization of glucose into fructose with base additive and on the other hand, coking has been avoided by accelerating its competing reactions even at the glucose concentration of 10%(mass). More interestingly, it was indicated that glucose of low concentration favors retro-aldol reaction while the one of high concentration tends to hydrogenate.

Key words: biomass, Ni-W2C catalyst, hydrogenation, glycols, mechanism

CLC Number: 

  • TQ 352.6

Table 1

Product distributions of glucose conversion at different temperatures"

T/K Conversion/% Yield/%
Ery Gly EG 1,2-PG Sor Others
393 6.4 0 0 0 0 4.0 2.0
413 27.4 0.6 0.1 1.4 0 18.8 6.5
433 61.4 4.7 1.0 9.2 4.1 16.4 26.0
453 86.0 7.7 2.4 29.3 9.7 12.1 24.8
473 100.0 4.7 2.4 28.0 9.4 13.4 42.1
493 100.0 8.3 3.4 33.6 13.5 11.0 30.2

Table 2

Product distributions of glucose conversion at different initial concentrations"

Glucose concentration/%(mass) Conversion/% Yield/% Coking
Ery Gly EG 1,2-PG Sor Others
0.5 100 7.4 3.0 52.2 15.8 5.9 15.7 no
2 100 8.3 3.4 33.6 13.5 11.0 30.2 no
5 100 trace trace trace trace trace trace yes
6.6 100 trace trace trace trace trace trace yes
10 100 trace trace trace trace trace trace yes

Table 3

Product distributions of glucose conversion at different reaction pressures"

Reaction pressure/MPa Conversion/% Yield/%
Ery Gly EG 1,2-PG Sor Others
2 100 trace trace trace trace trace 100
5 100 1.9 0.5 6.5 3.2 22.3 65.5
7 100 6.7 2.7 31.9 8.2 16.4 34.1
10 100 8.3 3.4 33.6 13.5 11.0 30.2

Fig.1

Product concentration (mass fraction) of glucose conversion at different times"

Fig.2

HPLC profile for intermediate products of glucose conversion"

Table 4

Analysis results of extracted sample by GC-MS"

出峰时间/min CAS号 名称
3.479 116-09-6 羟基丙酮
3.978 107-21-1 乙二醇
4.769 57-55-6 1,2-丙二醇
7.495 97-99-4 四氢糠醇

Table 5

Product mixture category"

产物分类 具体产物
C6 甘露糖,果糖,山梨醇,甘露醇
C4 赤藓糖醇,苏糖醇
C3 甘油,1,2-丙二醇,羟基丙酮
C2 乙二醇

Fig.3

Proposed pathways for conversion of glucose to sorbitol and mannitol"

Fig.4

Proposed pathways for conversion of glucose and mannose to ethylene glycol, erythritol and threitol"

Fig.5

Proposed pathways for conversion of fructose to glycerol and 1,2-propanediol"

Fig.6

Simplified reaction networks of 2%Ni-30%W2C/AC catalyzed glucose conversion"

Table 6

Effect of base catalyst amount on glucose conversion"

Base amount Conversion/% Yield/%
Ery Gly EG 1,2-PG Sor C3 Others
0 100 5.7 2.7 30.1 10.8 15.6 13.5 34.4
6%Ba(OH)2 100 1.1 13.2 7.1 28.5 14.4 41.7 35.7
10%Ba(OH)2 100 1.5 14.4 5.1 30.0 8.7 44.4 40.3
15%Ba(OH)2 100 1.1 8.2 3.2 25.2 13.2 33.4 50.2

Table 7

Effect of catalyst amount on 10% glucose conversion"

Catalyst amount/g Yield /% Coking
Ery Gly EG 1,2-PG Sor Others
0.5 trace trace trace trace trace 100 yes
0.5 trace trace trace trace trace 100 yes
1.0 4.8 3.2 18.6 4.9 22.1 43.4 no
1.5 6.1 4.1 17.1 4.6 38.5 26.2 no
2.0 5.6 3.8 7.7 2.8 67.1 10.2 no
3.0 6.4 3.7 9.6 3.0 66.7 8.9 no

Table 8

Effect of initial glucose concentration on glucose conversion"

Catalyst amount/g Glucose concentration/%(mass)

(Glucose amount/

catalyst amount)/ (g/g)

Yield/%
Ery Gly EG 1,2-PG Sor Others
0.5 0.5 3.3/1 7.4 3.0 52.2 15.8 5.9 15.7
2.0 2 3.3/1 9.4 2.9 39.9 12.9 21.2 13.7
3.03 10 3.3/1 5.7 3.7 9.6 2.9 66.7 11.4
1 Kruse A , Funke A , Titirici M M . Hydrothermal conversion of biomass to fuels and energetic materials[J]. Curr. Opin. Chem. Biol., 2013, 17(3): 515-521.
2 Ruppert A M , Weinberg K , Palkovits R . Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals[J]. Angew. Chem. Int. Ed., 2012, 51(11): 2564-2601.
3 Corma A , Iborra S , Velty A . Chemical routes for the transformation of biomass into chemicals[J]. Chem. Rev., 2007, 107(6): 2411-2502.
4 Li Y P , Liao Y H , Cao X F , et al . Advances in hexitol and ethylene glycol production by one-pot hydrolytic hydrogenation and hydrogenolysis of cellulose[J]. Biomass and Bioenergy, 2015, 74: 148-161.
5 Zheng M Y , Pang J F , Wang A Q , et al . One-pot catalytic conversion of cellulose to ethylene glycol and other chemicals: from fundamental discovery to potential commercialization[J]. Chinese Journal of Catalysis, 2014, 35(5): 602-613.
6 Xiao Z H , Jin S H , Pang M , et al . Conversion of highly concentrated cellulose to 1,2-propanediol and ethylene glycol over highly efficient CuCr catalysts[J]. Green Chem., 2013, 15(4): 891-895.
7 Li N X , Zheng Y , Wei L F , et al . Metal nanoparticles supported on WO3 nanosheets for highly selective hydrogenolysis of cellulose to ethylene glycol[J]. Green Chem., 2017, 19(3): 682-691.
8 Pang J F , Zheng M Y , Li X S , et al . Selective conversion of concentrated glucose to 1,2-propylene glycol and ethylene glycol by using RuSn/AC catalysts[J]. Applied Catalysis B: Environmental, 2018, 239: 300-308.
9 Liu C W , Zhang C H , Liu K K , et al . Aqueous-phase hydrogenolysis of glucose to value-added chemicals and biofuels: a comparative study of active metals[J]. Biomass and Bioenergy, 2015, 72: 189-199.
10 Liang D , Liu C W , Deng S P , et al . Aqueous phase hydrogenolysis of glucose to 1,2-propanediol over copper catalysts supported by sulfated spherical carbon[J]. Catalysis Communications, 2014, 54: 108-113.
11 Yazdani P , Wang B , Du Y , et al . Lanthanum oxycarbonate modified Cu/Al2O3 catalysts for selective hydrogenolysis of glucose to propylene glycol: base site requirements[J]. Catal. Sci. Technol., 2017, 7(20): 4680-4690.
12 Liu C W , Zhang C H , Hao S L , et al . WO x modified Cu/Al2O3 as a high-performance catalyst for the hydrogenolysis of glucose to 1,2-propanediol[J]. Catalysis Today, 2016, 261: 116-127.
13 Ji N , Zhang T , Zheng M Y , et al . Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts[J]. Angew. Chem. Int. Ed., 2008, 47(44): 8510-8513.
14 Wang A Q , Zhang T . One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts[J]. Acc. Chem. Res., 2013,46(7): 1377-1386.
15 Cao Y L , Wang J W , Kang M Q , et al . Catalytic conversion of glucose and cellobiose to ethylene glycol over Ni-WO3/SBA-15 catalysts[J]. RSC Adv., 2015, 5(110): 90904-90912.
16 Xiao Z Q , Zhang Q , Chen T T , et al . Heterobimetallic catalysis for lignocellulose to ethylene glycol on nickel-tungsten catalysts: influenced by hydroxy groups[J]. Fuel, 2018, 230: 332-343.
17 Liu C W , Zhang C H , Sun S , et al . Effect of WO x on bifunctional Pd-WO x /Al2O3 catalysts for the selective hydrogenolysis of glucose to 1,2-propanediol[J]. ACS Catal., 2015, 5(8): 4612-4623.
18 Zheng M Y , Wang A Q , Ji N , et al . Transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol[J]. ChemSusChem, 2010, 3(1): 63-66.
19 Tai Z J , Zhang J Y , Wang A Q , et al . Temperature-controlled phase-transfer catalysis for ethylene glycol production from cellulose[J]. Chem. Commun., 2012, 48(56): 7052-7054.
20 Zhao G H , Zheng M Y , Sun R Y , et al . Ethylene glycol production from glucose over W-Ru catalysts: maximizing yield by kinetic modeling and simulation[J]. AIChE Journal, 2017, 63(6): 2072-2080.
21 Zheng M Y , Pang J F , Sun R Y , et al . Selectivity control for cellulose to diols: dancing on eggs[J]. ACS Catal., 2017, 7(3): 1939-1954.
22 Hamdy M S , Eissaa M A , Keshk S A . New catalyst with multiple active sites for selective hydrogenolysis of cellulose to ethylene glycol[J]. Green Chem., 2017, 19(21): 5144-5151.
23 Srokol Z W , Rothenberg G . Practical issues in catalytic and hydrothermal biomass conversion: concentration effects on reaction pathways[J]. Top. Catal., 2010, 53(15-18): 1258-1263.
24 袁兆平 . Ni-W2C催化葡萄糖氢解制备低碳二元醇反应机理研究[D]. 上海: 华东理工大学, 2014.
Yuan Z P . Mechanistic study on catalytic conversion of glucose into low carbon glycols over nickel promoted tungsten carbide catalyst[D]. Shanghai: East China University of Science and Technology, 2014.
25 乔鸿昌 .Ni-W2C/AC催化葡萄糖氢解制备低碳二元醇过程分析及产物调控[D]. 上海: 华东理工大学, 2016.
Qiao H C . Process analysis and product control of glucose hydrogenolysis to low carbon glycols over Ni-W2C/AC catalyst[D]. Shanghai: East China University of Science and Technology, 2016.
26 Crezee E , Hoffer B W , Berger R J , et al . Three-phase hydrogenation of D-glucose over a carbon supported ruthenium catalyst—mass transfer and kinetics[J]. Applied Catalysis A: General, 2003, 251(1): 1-17
27 Zhao G H , Zheng M Y , Zhang J , et al . Catalytic conversion of concentrated glucose to ethylene glycol with semicontinuous reaction system[J]. Ind. Eng. Chem. Res., 2013, 52(28): 9566-9572.
28 Wang H J , Zhu L L , Peng S , et al . High efficient conversion of cellulose to polyols with Ru/CNTs as catalyst[J]. Renewable Energy, 2012, 37: 192-196.
29 Wang T F , Nolte M W , Shanks B H . Catalytic dehydration of C6 carbohydrates for the production of hydroxymethylfurfural (HMF) as a versatile platform chemical[J]. Green Chem., 2014, 16(2): 548-572.
30 Chuntanapum A , Matsumura Y . Char formation mechanism in supercritical water gasification process: a study of model compounds[J]. Ind. Eng. Chem. Res., 2010, 49(9): 4055-4062
31 Chuntanapum A , Yong T L K , Miyake S , et al . Behavior of 5-HMF in subcritical and supercritical water[J]. Ind. Eng. Chem. Res., 2008,47(9): 2956-2962.
32 Pan J X , Li J H , Wang C , et al . Multi-wall carbon nanotubes supported ruthenium for glucose hydrogenation to sorbitol[J]. Reaction Kinetics and Catalysis Letters, 2007, 90(2): 233-242.
33 Zhang J Y , Hou B L , Wang A Q , et al . Kinetic study of the competitive hydrogenation of glycolaldehyde and glucose on Ru/C with or without AMT[J]. AIChE Journal, 2015, 61(1): 224-238.
34 Choudhary V , Pinar A B , Lobo R F , et al . Comparison of homogeneous and heterogeneous catalysts for glucose-to-fructose isomerization in aqueous media[J]. ChemSusChem, 2013, 6(12): 2369-2376.
35 Gounder R , Davis M E . Titanium-beta zeolites catalyze the stereospecific isomerization of D-glucose to L-sorbose via intramolecular C5–C1 hydride shift[J]. ACS Catal., 2013, 3(7): 1469-1476.
36 Rai N , Caratzoulas S , Vlachos D G . Role of silanol group in Sn-beta zeolite for glucose isomerization and epimerization reactions[J]. ACS Catal., 2013, 3(10): 2294-2298.
37 Sasaki M , Goto K , Tajima K , et al . Rapid and selective retro-aldol condensation of glucose to glycolaldehyde in supercritical water[J]. Green Chem., 2002, 4(3): 285-287.
38 Matsumura Y . Glucose decomposition kinetics in water at 25 MPa in the temperature range of 448—673 K[J]. Ind. Eng. Chem. Res., 2006, 45(6): 1875-1879.
39 KnežEvić D , Swaaij W P M , Kersten S R A . Hydrothermal conversion of biomass(Ⅰ): Glucose conversion in hot compressed water[J]. Ind. Eng. Chem. Res., 2009, 48(10): 4731-4743.
40 Sohounloue D K , Montassier C , Barbier J . Catalytic hydrogenolysis of sorbitol[J]. React. Kinet. Catal. Lett., 1983, 22(3/4): 391-397.
41 Andrews M A , Klaeren S A . Selective hydrocracking of monosaccharide carbon-carbon single bonds under mild conditions. ruthenium hydride catalyzed formation of glycols[J]. J. Am. Chem. Soc., 1989, 111(11): 4133-4134.
42 Montassier C , Giraud D , Barbier J . Polyol conversion by liquid phase heterogeneous catalysis over metals[J]. Studies in Surface Science and Catalysis, 1988, 41: 165-170.
43 Wang K , Hawley M C , Furney T D . Mechanism study of sugar and sugar alcohol hydrogenolysis using 1,3-diol model compounds[J]. Ind. Eng. Chem. Res., 1995, 34(11): 3766-3770.
44 Ooms R , Dusselier M , Geboers J A , et al . Conversion of sugars to ethylene glycol with nickel tungsten carbide in a fed-batch reactor: high productivity and reaction network elucidation[J]. Green Chem., 2014, 16(2): 695-707.
45 Yu Y , Wu H W . Kinetics and mechanism of glucose decomposition in hot-compressed water: effect of initial glucose concentration[J]. Ind. Eng. Chem. Res., 2011, 50(50): 10500-10508.
46 李菲, 夏燕, 应惠娟, 等 . 甘油催化转移氢解制备丙二醇及其反应机理[J]. 浙江工业大学学报, 2012, 40(3): 275-278.
Li F , Xia Y , Ying H J , et al . The study of catalytic transfer hydrogenolysis of glycerol to propylene glycol and it’s mechanism[J]. Journal of Zhejiang University of Technology, 2012, 40(3): 275-278.
47 Kabyemela B M , Adschiri T , Malaluan R M , et al . Glucose and fructose decomposition in subcritical and supercritical water: detailed reaction pathway, mechanisms, and kinetics[J]. Ind. Eng. Chem. Res., 1999, 38(8): 2888-2895.
48 Lima S , Dias A S , Lin Z , et al . Isomerization of D-glucose to D-fructose over metallosilicate solid bases[J]. Applied Catalysis A: General, 2008, 339(1): 21-27.
49 贾松岩, 刘民, 公艳艳, 等 . 水溶液中催化剂量无机碱和有机碱催化葡萄糖异构制果糖[J]. 石油学报(石油加工), 2012, 28(6): 940-949.
Jia S Y , Liu M , Gong Y Y , et al . Isomerization of glucose to fructose in aqueous solution with a catalytic amount of inorganic or organic base[J]. Acta Petrol. Sin. (Petrol. Proc. Sec.), 2012, 28(6): 940-949.
[1] Dantong LIU, Cheng ZHENG, Taoyan MAO. Microwave extraction of cardiovascular Chinese medicine formula warming heart [J]. CIESC Journal, 2019, 70(S1): 115-123.
[2] Wu SU, Xiaogang SHI, Yingya WU, Jinsen GAO, Xingying LAN. CFD simulation on hydrogenation of acetylene to ethylene in slurry bed [J]. CIESC Journal, 2019, 70(5): 1858-1867.
[3] Fengteng HU, Jianlong YAO, Xiaoqing LI, Sihan LI, Xinhuan YAN. Properties of Sr modified Cu-based catalysts for hydrogenation of fructose to mannitol [J]. CIESC Journal, 2019, 70(4): 1420-1428.
[4] Xufeng WANG, Jing LIU, Feng LIU, Yingju YANG. Characteristics of biomass chemical looping gasification with CoFe2O4 as oxygen carrier [J]. CIESC Journal, 2019, 70(4): 1583-1590.
[5] Donghai AN, Xiaolin HAN, Xingxing CHENG, Binxuan ZHOU, Ying ZHENG, Yong DONG. Effect mechanisms of different flue gas on adsorption of mercury by powder activated coke [J]. CIESC Journal, 2019, 70(4): 1575-1582.
[6] Caiyun WEI, Jingjing TAN, Xiaoli XIA, Yongxiang ZHAO. Influence of calcination temperature on CuMgAl catalytic performance for hydrogenation of furfuralcohol to pentanediol [J]. CIESC Journal, 2019, 70(4): 1409-1419.
[7] Shaojuan ZENG, Dawei SHANG, Min YU, Hao CHEN, Haifeng DONG, Xiangping ZHANG. Applications and perspectives of NH3 separation and recovery with ionic liquids [J]. CIESC Journal, 2019, 70(3): 791-800.
[8] Feng LUO, Li LIN, Zhenchen LI, Wenyu LI, Xianlin CHEN, Sha SHA, Tao LUO. Electrochemical reactions and reactors for biomass valorisation [J]. CIESC Journal, 2019, 70(3): 801-816.
[9] Tianshui LIANG, Zongying WANG, Kun GAO, Runwan LI, Zheng WANG, Wei ZHONG, Jun ZHAO. Analysis of fire suppression effectiveness of ultra-fine water mist containing iron compounds additives in cup burner [J]. CIESC Journal, 2019, 70(3): 1236-1242.
[10] Zhencheng YE, Huanlan ZHOU, Debao RAO. Hybrid modeling and optimization of acetylene hydrogenation process [J]. CIESC Journal, 2019, 70(2): 496-507.
[11] Miaofang ZHOU, Haiqiang SHI, Chengxiang LI, Leiming WANG, Mimi YUAN. Effect of prehydrolysis strength on properties of black liquor from kraft pulping of Acacia wood [J]. CIESC Journal, 2019, 70(1): 234-241.
[12] Siran FENG, Pingzhong FENG, Shunni ZHU, Zhongming WANG, Zhenhong YUAN. Nutrient removal and biomass production from dairy farm liquid digestate treatment using microalga Chlorella vulgaris [J]. CIESC Journal, 2019, 70(1): 227-233.
[13] Chen CHEN, Ying WANG, Hong LIU, Yan CHEN, Mingdong YAO, Wenhai XIAO. Exploring the key structural properties affecting the function of multi-step phytoene dehydrogenase CrtI [J]. CIESC Journal, 2019, 70(1): 189-198.
[14] ZHANG Jizong, CHANG Houchun, CHANG Jianmin, LONG Jinxing, LI Xuehui. Effect of bio-oil on properties of bio-oil starch adhesive [J]. CIESC Journal, 2018, 69(S1): 123-128.
[15] LÜ Huisheng, ZHANG Jia, LI Yonghui, GENG Zhongfeng, WANG Zhi, LÜ Chunliu, SHI Xingfang. Effect of organic acids on subcritical hydrolysis of sweet sorghum bagasse [J]. CIESC Journal, 2018, 69(9): 4058-4065.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LING Lixia, ZHANG Riguang, WANG Baojun, XIE Kechang. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] LEI Zhigang, LONG Aibin, JIA Meiru, LIU Xueyi. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] SU Haifeng, LIU Huaikun, WANG Fan, LÜXiaoyan, WEN Yanxuan. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] WANG Jianlin, XUE Yaoyu, YU Tao, ZHAO Liqiang. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] SUN Fubao, MAO Zhonggui, ZHANG Jianhua, ZHANG Hongjian, TANG Lei, ZHANG Chengming, ZHANG Jing, ZHAI Fangfang. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] Gao Ruichang, Song Baodong and Yuan Xiaojing( Chemical Engineering Research Center, Tianjin University, Tianjin 300072). LIQUID FLOW DISTRIBUTION IN GAS - LIQUID COUNTER - CONTACTING PACKED COLUMN[J]. , 1999, 50(1): 94 -100 .
[7] Su Yaxin, Luo Zhongyang and Cen Kefa( Institute of Thermal Power Engineering , Zhejiang University , Hangzhou 310027). A STUDY ON THE FINS OF HEAT EXCHANGERS FROM OPTIMIZATION OF ENTROPY GENERATION[J]. , 1999, 50(1): 118 -124 .
[8] Luo Xiaoping(Department of Industrial Equipment and Control Engineering , South China University of Technology, Guangzhou 510641)Deng Xianhe and Deng Songjiu( Research Institute of Chemical Engineering, South China University of Technology, Guangzhou 5106. RESEARCH ON FLOW RESISTANCE OF RING SUPPORT HEAT EXCHANGER WITH LONGITUDINAL FLUID FLOW ON SHELL SIDE[J]. , 1999, 50(1): 130 -135 .
[9] Jin Wenzheng , Gao Guangtu , Qu Yixin and Wang Wenchuan ( College of Chemical Engineering, Beijing Univercity of Chemical Technology, Beijing 100029). MONTE CARLO SIMULATION OF HENRY CONSTANT OF METHANE OR BENZENE IN INFINITE DILUTE AQUEOUS SOLUTIONS[J]. , 1999, 50(2): 174 -184 .
[10]

LI Qingzhao;ZHAO Changsui;CHEN Xiaoping;WU Weifang;LI Yingjie

.

Combustion of pulverized coal in O2/CO2 mixtures and its pore structure development

[J]. , 2008, 59(11): 2891 -2897 .