CIESC Journal ›› 2019, Vol. 70 ›› Issue (S1): 177-181.doi: 10.11949/j.issn.0438-1157.20181405
• Energy and environmental engineering • Previous Articles Next Articles
CLC Number:
1 | GedyeR, SmithF, WestawayK, et al. The use of microwave ovens for rapid organic synthesis[J]. Tetrahedron Letter, 1986, 27(3): 279-282. |
2 | GiguereR J, BrayT L, DuncanS M. Application of commercial microwave ovens to organic synthesis[J]. Tetrahedron Letter, 1986, 27(41): 4945-4948. |
3 | CeciliaR, KunzU, TurekT. Possibilities of process intensification using microwaves applied to catalytic microreactors[J]. Chemical Engineering and Processing: Process Intensification, 2007, 46(9): 870-881. |
4 | 樊兴君, 尤进茂, 谭干祖, 等. 微波促进有机化学反应研究进展[J]. 化学进展, 1998, 10(3): 285-295. |
FangX J, YouJ M, TanG Z, et al. Progress in microwave organic reaction enhancement chemistry[J]. Progress in Chemistry, 1998, 10(3): 285-295. | |
5 | 李永红, 李跃明, 沈玲. 微波促进有机反应原理及微波有机合成仪[J]. 化工技术与开发, 2006, 35(3): 14-16. |
LiY H, LiY M, ShenL. The principle of microwave-organic reaction enhancement chemistry and equipment of microwave organic synthesis [J]. Technology & Development of Chemical Industry, 2006, 35(3): 14-16. | |
6 | KuH S, SioresE, TaubeA, et al. Productivity improvement through the use of industrial microwave technologies[J]. Computers & Industrial Engineering, 2002, 42(2/3/4): 281-290. |
7 | ZhangX, HaywardD O. Applications of microwave dielectric heating in environment-related heterogeneous gas-phase catalytic systems[J]. Inorganica Chimica Acta, 2006, 359(11): 3421-3433. |
8 | JonesD A, LelyveldT P, MavrofidisS D, et al. Microwave heating applications in environmental engineering—a review[J]. Resources, Conservation and Recycling, 2002, 34(2): 75-90. |
9 | SantosT, ValenteM A, MonteiroJ, et al. Electromagnetic and thermal history during microwave heating[J]. Applied Thermal Engineering, 2011, 31(16): 3255-3261. |
10 | KappeC O. Microwave dielectric heating in synthetic organic chemistry[J]. Chemical Society Reviews, 2008, 37(6): 1127-1139. |
11 | ZhangX, HaywardD O, MingosD M P. Effects of microwave dielectric heating on heterogeneous catalysis[J]. Catalysis Letters, 2003, 88(1/2): 33-38. |
12 | LehmannH, LaVecchiaL. Scale-up of organic reactions in a pharmaceutical kilo-lab using a commercial microwave reactor[J]. Organic Process Research & Development, 2010, 14(3): 650-656. |
13 | RoussyG, BennaniA, ThiebautJ M. Temperature runaway of microwave irradiated materials[J]. Journal of Applied Physics, 1987, 62(4): 1167-1170. |
14 | VadivambalR, JayasD S. Non-uniform temperature distribution during microwave heating of food materials—a review[J]. Food and Bioprocess Technology, 2010, 3(2): 161-171. |
15 | 后藤廉平. 新编基础物理化学[M]. 北京: 高等教育出版社, 1987:16-18. |
HOUT L P. New Basic Physical Chemisty[M]. Beijing: Higher Education Press, 1987:16-18. | |
16 | 杨晓庆, 黄卡玛, 微波与化学反应相互作用中的关键问题讨论[J]. 电波科学学报, 2006, 21(5): 802-809. |
YangX Q, HuangK M. Investigation of key problems of interaction between microwave and chemical reaction [J]. Chinese Journal of Radio Science, 2006, 21(5): 802-809. | |
17 | 杨晓庆, 微波与化学反应体系相互作用过程中的特殊效应研究[D].成都: 四川大学, 2006. |
Yang X Q, Study on specific effect in the interaction between microwave and chemical reaction[D]. Chengdu: Sichuan University, 2006. | |
18 | CoffeyW T, ParanjapeB V. Dielectric and Kerr effect relaxation in alternating electric fields[C]//Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences. Dublin: Royal Irish Academy, 1978: 17-25. |
19 | ScheiderW. Dielectric relaxation of molecules with fluctuating dipole moment[J]. Biophysical Journal, 1965, 5(5): 617-628. |
20 | SchwarzG. Dielectric relaxation due to chemical rate processes[J]. The Journal of Physical Chemistry, 1967, 71(12): 4021-4030. |
21 | CzerlinskiG H. Chemical Relaxation[M]. New York: Dekker, 1966. |
22 | SekkatZ, WoodJ, KnollW. Reorientation mechanism of azobenzenes within the trans. fwdarw. cis photoisomerization[J]. The Journal of Physical Chemistry, 1995, 99(47): 17226-17234. |
23 | HuangK, HongT. Dielectric polarization and electric displacement in polar-molecule reactions[J]. The Journal of Physical Chemistry A, 2015, 119(33): 8898-8902. |
24 | MelroseD B, McPhedranR C. Electromagnetic Processes in Dispersive Media[M]. Oxford city: Cambridge University Press, 2005. |
25 | LandauL D, BellJ S, KearsleyM J, et al. Electrodynamics of Continuous Media[M]. Amsterdam: Elsevier, 1984. |
26 | MorgenthalerF R. Velocity modulation of electromagnetic waves[J]. IRE Transactions on Microwave Theory and Techniques, 1958, 6(2): 167-172. |
27 | BerezhianiV I, MahajanS M, MiklaszewskiR. Frequency up-conversion and trapping of ultrashort laser pulses in semiconductor plasmas[J]. Physical Review A, 1999, 59(1): 859. |
28 | KalluriD K. Electromagnetics of Time Varying Complex Media: Frequency and Polarization Transformers[M]. New York: CRC Press, 2010. |
29 | BakunovM I, GrachevI S. Energetics of electromagnetic wave transformation in a time-varying magnetoplasma medium[J]. Physical Review E, 2002, 65(3): 036405. |
30 | ChenB, GaoB, GeC, et al. Accurate solution and characteristics for electromagnetic wave propagation in time-varying media[J]. Modern Applied Science, 2009, 3(10): 68. |
31 | NerukhA, SakhnenkoN, BensonT, et al. Non-stationary Electromagnetics[M]. New York: CRC Press, 2012. |
[1] | YANG Zihao, JIN Min, LI Mingyuan, DONG Zhaoxia, YAN Peng. Implication of Geochemical Simulation for CO2 Storage Using Data of York Reservoir [J]. , 2011, 19(6): 1052-1059. |
[2] | Adam A. Donaldson, ZHANG Zisheng. Coupled Transport Phenomena in Corrugated Photocatalytic Reactors [J]. , 2011, 19(5): 763-772. |
|