CIESC Journal ›› 2019, Vol. 70 ›› Issue (S1): 177-181.doi: 10.11949/j.issn.0438-1157.20181405

• Energy and environmental engineering • Previous Articles     Next Articles

Spectrum changes of electromagnetic pluses in chemical reactions

Xingpeng LIU(),Dandan YAN   

  1. College of Network and Communication Engineering, Chengdu Technological University, Chengdu 611730, Sichuan, China
  • Received:2018-11-23 Revised:2018-12-26 Online:2019-03-31 Published:2019-04-26
  • Contact: Xingpeng LIU E-mail:lxp_herb@163.com

Abstract:

Microwave-assisted chemical reactions have been attractive. However, the problems of inhomogeneous heating have been preventing the further application of microwaves in chemical engineering. In order to solve these problems, the characteristics of electromagnetic wave propagation in chemical reactions need to be investigated. As a typical time-varying and non-equilibrium system, the dielectric properties of chemical reactions change during chemical reactions. Moreover, the frequency of the electromagnetic waves in the reactions can be influent by the variation of dielectric properties. In this paper, based on the polarization characteristics of the simple polar-molecule reactions, the propagation of electromagnetic pulses in the reactions with different reaction rates is simulated to disclose the effects of the time-varying and dispersive characteristics on the spectrum of electromagnetic pluses. For slow reactions, the time-varying characteristics are negligible, and the dispersive characteristics leads to the spectrum variation. For fast reactions, the time-varying and dispersive characteristics make the spectrum changes of electromagnetic pluses.

Key words: chemical reactions, simple polar-molecule reactions, spectrum changes

CLC Number: 

  • TN 015

Fig.1

Input and output of modulated Gaussian pulse in general dispersive media"

Fig.2

Output electric field in reactions when concentrations of Xi decrease"

Fig.3

Output electric field in reactions when concentrations of Xi increase"

1 GedyeR, SmithF, WestawayK, et al. The use of microwave ovens for rapid organic synthesis[J]. Tetrahedron Letter, 1986, 27(3): 279-282.
2 GiguereR J, BrayT L, DuncanS M. Application of commercial microwave ovens to organic synthesis[J]. Tetrahedron Letter, 1986, 27(41): 4945-4948.
3 CeciliaR, KunzU, TurekT. Possibilities of process intensification using microwaves applied to catalytic microreactors[J]. Chemical Engineering and Processing: Process Intensification, 2007, 46(9): 870-881.
4 樊兴君, 尤进茂, 谭干祖, 等. 微波促进有机化学反应研究进展[J]. 化学进展, 1998, 10(3): 285-295.
FangX J, YouJ M, TanG Z, et al. Progress in microwave organic reaction enhancement chemistry[J]. Progress in Chemistry, 1998, 10(3): 285-295.
5 李永红, 李跃明, 沈玲. 微波促进有机反应原理及微波有机合成仪[J]. 化工技术与开发, 2006, 35(3): 14-16.
LiY H, LiY M, ShenL. The principle of microwave-organic reaction enhancement chemistry and equipment of microwave organic synthesis [J]. Technology & Development of Chemical Industry, 2006, 35(3): 14-16.
6 KuH S, SioresE, TaubeA, et al. Productivity improvement through the use of industrial microwave technologies[J]. Computers & Industrial Engineering, 2002, 42(2/3/4): 281-290.
7 ZhangX, HaywardD O. Applications of microwave dielectric heating in environment-related heterogeneous gas-phase catalytic systems[J]. Inorganica Chimica Acta, 2006, 359(11): 3421-3433.
8 JonesD A, LelyveldT P, MavrofidisS D, et al. Microwave heating applications in environmental engineering—a review[J]. Resources, Conservation and Recycling, 2002, 34(2): 75-90.
9 SantosT, ValenteM A, MonteiroJ, et al. Electromagnetic and thermal history during microwave heating[J]. Applied Thermal Engineering, 2011, 31(16): 3255-3261.
10 KappeC O. Microwave dielectric heating in synthetic organic chemistry[J]. Chemical Society Reviews, 2008, 37(6): 1127-1139.
11 ZhangX, HaywardD O, MingosD M P. Effects of microwave dielectric heating on heterogeneous catalysis[J]. Catalysis Letters, 2003, 88(1/2): 33-38.
12 LehmannH, LaVecchiaL. Scale-up of organic reactions in a pharmaceutical kilo-lab using a commercial microwave reactor[J]. Organic Process Research & Development, 2010, 14(3): 650-656.
13 RoussyG, BennaniA, ThiebautJ M. Temperature runaway of microwave irradiated materials[J]. Journal of Applied Physics, 1987, 62(4): 1167-1170.
14 VadivambalR, JayasD S. Non-uniform temperature distribution during microwave heating of food materials—a review[J]. Food and Bioprocess Technology, 2010, 3(2): 161-171.
15 后藤廉平. 新编基础物理化学[M]. 北京: 高等教育出版社, 1987:16-18.
HOUT L P. New Basic Physical Chemisty[M]. Beijing: Higher Education Press, 1987:16-18.
16 杨晓庆, 黄卡玛, 微波与化学反应相互作用中的关键问题讨论[J]. 电波科学学报, 2006, 21(5): 802-809.
YangX Q, HuangK M. Investigation of key problems of interaction between microwave and chemical reaction [J]. Chinese Journal of Radio Science, 2006, 21(5): 802-809.
17 杨晓庆, 微波与化学反应体系相互作用过程中的特殊效应研究[D].成都: 四川大学, 2006.
Yang X Q, Study on specific effect in the interaction between microwave and chemical reaction[D]. Chengdu: Sichuan University, 2006.
18 CoffeyW T, ParanjapeB V. Dielectric and Kerr effect relaxation in alternating electric fields[C]//Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences. Dublin: Royal Irish Academy, 1978: 17-25.
19 ScheiderW. Dielectric relaxation of molecules with fluctuating dipole moment[J]. Biophysical Journal, 1965, 5(5): 617-628.
20 SchwarzG. Dielectric relaxation due to chemical rate processes[J]. The Journal of Physical Chemistry, 1967, 71(12): 4021-4030.
21 CzerlinskiG H. Chemical Relaxation[M]. New York: Dekker, 1966.
22 SekkatZ, WoodJ, KnollW. Reorientation mechanism of azobenzenes within the trans. fwdarw. cis photoisomerization[J]. The Journal of Physical Chemistry, 1995, 99(47): 17226-17234.
23 HuangK, HongT. Dielectric polarization and electric displacement in polar-molecule reactions[J]. The Journal of Physical Chemistry A, 2015, 119(33): 8898-8902.
24 MelroseD B, McPhedranR C. Electromagnetic Processes in Dispersive Media[M]. Oxford city: Cambridge University Press, 2005.
25 LandauL D, BellJ S, KearsleyM J, et al. Electrodynamics of Continuous Media[M]. Amsterdam: Elsevier, 1984.
26 MorgenthalerF R. Velocity modulation of electromagnetic waves[J]. IRE Transactions on Microwave Theory and Techniques, 1958, 6(2): 167-172.
27 BerezhianiV I, MahajanS M, MiklaszewskiR. Frequency up-conversion and trapping of ultrashort laser pulses in semiconductor plasmas[J]. Physical Review A, 1999, 59(1): 859.
28 KalluriD K. Electromagnetics of Time Varying Complex Media: Frequency and Polarization Transformers[M]. New York: CRC Press, 2010.
29 BakunovM I, GrachevI S. Energetics of electromagnetic wave transformation in a time-varying magnetoplasma medium[J]. Physical Review E, 2002, 65(3): 036405.
30 ChenB, GaoB, GeC, et al. Accurate solution and characteristics for electromagnetic wave propagation in time-varying media[J]. Modern Applied Science, 2009, 3(10): 68.
31 NerukhA, SakhnenkoN, BensonT, et al. Non-stationary Electromagnetics[M]. New York: CRC Press, 2012.
[1] YANG Zihao, JIN Min, LI Mingyuan, DONG Zhaoxia, YAN Peng. Implication of Geochemical Simulation for CO2 Storage Using Data of York Reservoir [J]. , 2011, 19(6): 1052-1059.
[2] Adam A. Donaldson, ZHANG Zisheng. Coupled Transport Phenomena in Corrugated Photocatalytic Reactors [J]. , 2011, 19(5): 763-772.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!