CIESC Journal ›› 2019, Vol. 70 ›› Issue (2): 572-580.doi: 10.11949/j.issn.0438-1157.20181340

• Process system engineering • Previous Articles     Next Articles

Improved intelligent warning method based on MWSPCA-CBR and its application in petrochemical industries

Zhiqiang GENG1,2(),Shaoxing JING1,2,Ju BAI1,2,Zhongkai WANG1,2,Qunxiong ZHU1,2,Yongming HAN1,2()   

  1. 1. College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
    2. Engineering Research Center of Intelligent PSE, Ministry of Education, Beijing 100029, China
  • Received:2018-11-15 Revised:2018-11-22 Online:2019-02-05 Published:2018-12-04
  • Contact: Yongming HAN E-mail:gengzhiqiang@mail.buct.edu.cn;hanym@mail.buct.edu.cn

Abstract:

The petroleum drilling project is a high-risk and costly system project. To effectively scan for potential problems of drilling, reduce non-productive time and lower related risks, this paper proposes an improved intelligent warning method based on moving window sparse principal component analysis (MWSPCA) integrating case-based reasoning (CBR) (MWSPCA-CBR). First, the MWSPCA is used to analyze the real-time data in the drilling process, and the time of occurrence of the anomaly is quickly located. Then the abnormal data is analyzed by using the CBR method to give possible exception types, and the associated handling methods are provided for monitoring experts. Finally, the proposed method is applied to intelligent warn abnormal problems of the petroleum drilling, the experimental results verify the feasibility and effectiveness of the proposed method and provide new ideas for reducing risks and costs during the petroleum drilling process.

Key words: principal component analysis, case-based reasoning, intelligent warning method, petroleum drilling process, process control, model-predictive control

CLC Number: 

  • TP 29

Fig.1

Flow chart of anomaly detection based on MWSPCA"

Fig.2

Flow chart of intelligent warning anomaly based on MWPCA-CBR"

Fig.3

Data changing graph of Fault 4 in TE process"

Fig.4

Statistics result of Fault 4 in TE process"

Table 1

Case description of pipe-sticking"

名 称内 容
案例时间2014/01/10 19:25
异常名称悬重参数异常
异常类型工程异常
异常地层馆陶组
异常井深1489.21 m

异常描述

2014年1月10日19:25时正常钻进至井深1489.21 m,迟深1489.00 m。测斜后下钻过程中钻头位置到达1479.65 m时,大钩下放时悬重由正常的480 kN下降至260 kN,大钩上提时悬重由正常的480 kN上升至660 kN,出现粘卡现象。当班人员立即通知井队当班干部及工程监督。

关键词

钻进,下钻,大钩下放,大钩负荷下降,大钩上提,大钩负荷上升
异常结论粘卡(属卡钻中的一种)

Fig.5

Data changing graph of pipe-sticking in drilling process"

Fig.6

Statistics result of pipe-sticking in drilling process"

Fig.7

Contributing degree of indices during abnormal time 856—975"

Table 2

Similarity between current anomaly and cases in case base"

关键词相似度井深相似度数据相似度总相似度案例名
0.820.760.860.49案例1
0.820.510.850.45案例9
0.770.550.850.44案例8
0.820.450.870.44案例4
0.820.450.860.44案例5
0.770.460.870.43案例2
0.770.570.750.42案例7
0.770.460.750.40案例3
0.820.450.690.40案例6
1 张正选, 梅大成, 高杰, 等. 钻井工程异常预警方法研究[J]. 计算机光盘软件与应用, 2014, 17(4): 152-152.
ZhangZ X, MeiD C, GaoJ, et al. Research on abnormity warning method in drilling engineering [J]. Computer CD Software and Applications, 2014, 17(4): 152-152.
2 GaoF, ZhaoX H, LiuH S, et al. The study of drilling safe monitoring system based on multi agent group [C]// Advanced Materials Research. Trans. Tech. Publications, 2012, 512: 2565-2569.
3 王林. 钻井故障诊断专家系统的研究与实现[D]. 成都: 电子科技大学, 2013.
WangL. The research and implementation of drilling fault diagnosis expert system [D]. Chengdu: University of Electronic Science and Technology of China, 2013.
4 胡睿. 钻井复杂情况与事故诊断专家系统研究[D]. 青岛: 中国石油大学(华东), 2010.
HuR. Research on drilling complex incidents and accident diagnosis based on expert system [D].Qingdao: China University of Petroleum, 2010.
5 张学洪, 李黔. 基于案例推理的井漏风险预警方法[J]. 断块油气田, 2017, 24(2): 255-258, 263.
ZhangX H, LiQ. Risk pre-warning method of well leakage based on case reasoning [J]. Fault-Block Oil & Gas Field, 2017, 24(2): 255-258, 263.
6 徐术国. 基于录井数据的钻井事故预警专家系统[D].北京: 中国石油大学(北京), 2011.
XuS G. Drilling accident warning expert system based on logging data [D]. Beijing: China University of Petroleum, 2011.
7 马鹏鹏, 周英操, 蒋宏伟, 等. 钻井风险控制系统关键技术[J]. 石油钻探技术, 2014, 42(3): 16-21.
MaP P, ZhouY C, JiangH W, et al. Key technology for drilling risk control system [J]. Petroleum Drilling Techniques, 2014, 42(3): 16-21.
8 FerreiroS, SierraB, IrigoienI, et al. Data mining for quality control: Burr detection in the drilling process[J]. Computers & Industrial Engineering, 2011, 60(4): 801-810.
9 袁俊和. 钻井过程中的故障诊断方法研究[D]. 青岛: 中国石油大学(华东), 2008.
YuanJ H. Study of fault diagnosis methods in well drilling process [D]. Qingdao: China University of Petroleum, 2008.
10 张东海, 席继强. 国外钻井技术发展现状[J]. 断块油气田, 2000, 7(5): 64-68.
ZhangD H, XiJ Q. Development status of foreign drilling technology [J]. Fault-Block Oil & Gas Field, 2000, 7(5): 64-68.
11 RamamurthiK, ShaverD P, AgoginoA M. Real time expert system for predictive diagnostics and control of drilling operation[C]//Artificial Intelligence Applications, 1990. Sixth Conference on. IEEE, 1990: 62-69.
12 LaiZ, LengY. Weak-signal detection based on the stochastic resonance of bistable Duffing oscillator and its application in incipient fault diagnosis[J]. Mechanical Systems and Signal Processing, 2016, 81: 60-74.
13 KedadoucheM, ThomasM, TahanA. A comparative study between empirical wavelet transforms and empirical mode decomposition methods: application to bearing defect diagnosis [J]. Mechanical Systems and Signal Processing, 2016, 81: 88-107.
14 连晓圆. 钻井过程中故障检测与诊断方法的研究[D]. 大连: 大连理工大学, 2013.
LianX Y. Fault detection and diagnosis method in drilling process[D]. Dalian: Dalian University of Technology, 2013.
15 孙正义, 高兴坤. 钻井卡钻事故预测及诊断专家系统模型的建立与实现[J]. 石油钻采工艺, 1996, 18(1): 20-23.
SunZ Y, GaoX K. The establishment and implementation of drilling accident prediction and the model of diagnosis expert system [J]. Oil Drilling & Production Technology, 1996, 18(1): 20-23.
16 王宝毅, 张宝生, 费沿光, 等. 基于案例推理的钻井复杂情况专家系统[J]. 石油大学学报(自然科学版), 2005, 29(6): 123-126.
WangB Y, ZhangB S, FeiY G, et al. A drilling troubles expert system based on case-based reasoning [J]. Journal of China University of Petroleum(Edition of Natural Science), 2005, 29(6): 123- 126.
17 郭建明, 李琪, 徐英卓. 基于实例和规则集成推理的钻井事故诊断处理系统[J]. 石油钻探技术, 2007, 35(3): 15-18.
GuoJ M, LiQ, XuY Z. Drilling accident diagnosis and treatment system based on case and rule integration reasoning [J]. Petroleum Drilling Techniques, 2007, 35(3): 15-18.
18 高晓荣, 徐英卓, 李琪. 基于CBR的井下复杂情况与事故智能诊断和处理系统[J]. 计算机应用研究, 2008, (5): 1446-1449.
GaoX R, XuY Z, LiQ. Intelligent diagnosis and processing system of complex situation in well and accident based on CBR [J]. Computer Application and Research, 2008, (5): 1446-1449.
19 郭伟伟. 基于故障树技术的远程故障诊断专家系统的研究[D]. 西安: 西北工业大学, 2007.
GuoW W. Research on remote fault diagnosis expert system based on fault tree technology [D]. Xi an: Northwestern Polytechnical University, 2007.
20 倪绍徐, 张裕芳, 易宏, 等. 基于故障树的智能故障诊断方法[J]. 上海交通大学学报, 2008, 42(8): 1372-1375.
NiS X, ZhangY F, YiH, et al. Intelligent fault diagnosis method based on fault tree [J]. Journal of Shanghai Jiao Tong University, 2008, 42(8): 1372-1375.
21 郭建明, 王彦平. 基于钻井工艺过程的事故诊断智能分析模型研究[J]. 西安石油大学学报(自然科学版), 2012, 27(3): 50-53.
GuoJ M, WangY P. Research on accident diagnosis intelligent analysis model based on drilling process [J]. Journal of Xi an Petroleum University, 2012, 27(3): 50-53.
22 JolliffeI T. Principal component analysis and factor analysis [M]//Principal Component Analysis. New York: Springer, 1986: 115-128.
23 董顺, 李益国, 孙栓柱, 等. 基于状态空间主成分分析网络的故障检测方法[J]. 化工学报, 2018, 69(8): 3528-3536.
DongS, LiY G, SunS Z, et al. Fault detection method based on state space-PCANet [J]. CIESC Journal, 2018, 69(8): 3528-3536.
24 CuiK, GaoQ, ZhangH, et al. Merging model-based two-dimensional principal component analysis[J]. Neurocomputing, 2015, 168: 1198-1206.
25 张媛媛, 韩少廷, 耿志强, 等. 自适应移动窗递推 PCA 过程监测方法研究[J]. 计算机与应用化学, 2011, (8): 1022-1026.
ZhangY Y, HanS T, GengZ Q, et al. Study on adaptive moving window recursive principal component analysis for process monitoring [J]. Computers and Applied Chemistry, 2011, (8): 1022-1026.
26 胡云鹏. 基于主元分析的传感器故障检测盲区预测[J]. 化工学报, 2017, 68(4): 1510-1515.
HuY P. Blind zone prediction for PCA-based sensor fault detection [J].CIESC Journal, 2017, 68(4): 1510-1515.
27 彭必灿, 张正道. 基于稀疏主元分析的过程监控研究[J]. 计算机工程与应用, 2014, (18): 240-245.
PengB C, ZhangZ D. Process monitoring research based on sparse principal component analysis [J]. Computer Engineering and Applications, 2014, (18): 240-245.
28 赵忠盖, 刘飞. 基于稀疏核主元分析的在线非线性过程监控[J]. 化工学报, 2008, 59(7): 1773-1777.
ZhaoZ G, LiuF. Online nonlinear process monitoring based on sparse kernel principal component analysis [J]. Journal of Chemical Industry and Engineering(China), 2008, 59(7): 1773-1777.
29 ZassR, ShashuaA. Nonnegative sparse PCA [C]// Proceedings of the Twentieth Annual Conference on Neural Information Processing Systems. Vancouver, British Columbia, Canada, 2006.
30 阮跃. 基于案例, 规则和模型推理的电站智能诊断系统[J]. 电站系统工程, 1998, 14(3): 45-47.
RuanY. Intelligent diagnosis system of power plant based on case, rule and inferential model [J]. Power System Engineering, 1998, 14(3): 45-47.
31 张琦, 孙劭文, 李文鸿, 等. 基于案例推理的机械故障诊断方法探讨[J]. 解放军理工大学学报(自然科学版), 2004, 5(5): 42-45.
ZhangQ, SunS W, LiW H, et al. Case-based reasoning for mechanical fault diagnosis [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2004, 5(5): 42-45.
32 李亚宁, 王学雷, 谭杰. 基于 PCR-多案例融合的焦化烟气脱硝过程指标优化设定[J]. 化工学报, 2018, 69(3): 998-1007.
LiY N, WangX L, TanJ. PCR-multi-case fusion method for setting optimal process indices of coking flue gas denitration [J]. CIESC Journal, 2018, 69(3): 998-1007.
33 柳玉, 贲可荣. 案例推理的故障诊断技术研究综述[J].计算机科学与探索, 2011, 5(10): 865-879.
LiuY, BenK R. Survey of fault diagnosis based on case reasoning [J]. Journal of Frontiers of Computer Science and Technology, 2011, 5(10): 865-879.
[1] Enwei ZHI, Fei YAN, Mifeng REN, Gaowei YAN. Soft sensor of wet ball mill load parameters based on transfer variational autoencoder - label mapping [J]. CIESC Journal, 2019, 70(S1): 150-157.
[2] Dong HUANG, Xionglin LUO. Judgement of process transition control strategies for large-range conditions change of chemical processes [J]. CIESC Journal, 2019, 70(5): 1848-1857.
[3] Shipin YANG, Zhen HUANG, Lijuan LI, Jianquan SONG, Jing YE, Hui WANG. A deep dive diagnostic and correction algorithm for mismatched sub-models in complicated chemical processes [J]. CIESC Journal, 2019, 70(4): 1485-1493.
[4] Junmiao TANG, Haizhen YU, Xuhua SHI, Chudong TONG. Dynamic monitoring of chemical processes based on latent variable auto-regressive algorithm [J]. CIESC Journal, 2019, 70(3): 987-994.
[5] Bowen SHI, Yanyan YIN, Fei LIU. Optimal control strategies combined with PSO and control vector parameterization for batchwise chemical process [J]. CIESC Journal, 2019, 70(3): 979-986.
[6] Baochang XU, Hua ZHANG, Jinshan WANG. Partial approximate least absolute deviation for nonlinear system identification based on radial basis function [J]. CIESC Journal, 2019, 70(2): 653-660.
[7] Zhizhen WANG, Zhiyun ZOU. Nonlinear predictive control strategies of pH neutralization process based on neural networks [J]. CIESC Journal, 2019, 70(2): 678-686.
[8] Bingbin GU, Weili XIONG. Fault diagnosis based on PCA method with multi-block information extraction [J]. CIESC Journal, 2019, 70(2): 736-749.
[9] Xiaohan ZHANG, Pingjiang WANG, Xiangbai GU, Yuan XU, Yanlin HE, Qunxiong ZHU. Research on principal components extraction based robust extreme learning machine(PCE-RELM) and its application to modeling chemical processes [J]. CIESC Journal, 2019, 70(2): 475-480.
[10] Haisheng CHEN, Tengfei WANG, Kejin HUANG, Yang YUAN, Xing QIAN, Liang ZHANG. Decentralized control system designs for reactive distillation columns with external recycle [J]. CIESC Journal, 2019, 70(2): 440-449.
[11] Limin WANG, Libin LU, Furong GAO, Donghua ZHOU. Infinite horizon linear quadratic hybrid fault-tolerant control for multi-phase batch process [J]. CIESC Journal, 2019, 70(2): 541-547.
[12] Kun ZHAI, Wenxia DU, Feng LYU, Tao XIN, Xiyuan JU. Fault detect method based on improved dynamic kernel principal component analysis [J]. CIESC Journal, 2019, 70(2): 716-722.
[13] LI Fan, XU Feng, LUO Xionglin. Control configuration design with genetic algorithm for decentralized control system [J]. CIESC Journal, 2018, 69(S2): 266-273.
[14] GAO Xuejin, HUANG Mengdan, QI Yongsheng, WANG Pu. Batch process monitoring using multiphase AR-PCA optimized with PDPSO [J]. CIESC Journal, 2018, 69(9): 3914-3923.
[15] DONG Shun, LI Yiguo, SUN Shuanzhu, LIU Xichui, SHEN Jiong. Fault detection method based on state space-PCANet [J]. CIESC Journal, 2018, 69(8): 3528-3536.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!