CIESC Journal ›› 2019, Vol. 70 ›› Issue (5): 1674-1681.doi: 10.11949/j.issn.0438-1157.20181289

• Thermodynamics • Previous Articles     Next Articles

Formation and stability of HCFC–141b hydrate in organic phase change emulsion

Linchen ZHOU(),Zhigao SUN(),Ling LU,Sai WANG,Juan LI,Cuimin LI   

  1. School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
  • Received:2018-11-02 Revised:2019-01-15 Online:2019-05-05 Published:2019-05-10
  • Contact: Zhigao SUN E-mail:963443807@qq.com;szg.yzu@163.com

Abstract:

To promote the hydrate formation, surfactants Tween 80 and Span 80 are added as emulsifiers in HCFC-141b, organic phase change materials (n-decanoic acid and dodecyl alcohol) and water system. Organic phase change material-surfactant-refrigerant aqueous emulsion is prepared by high-speed stirring. Emulsion increases the contact area of water and HCFC–141b. The effects of organic phase change materials and surfactants on the formation of hydrates are investigated experimentally under static conditions. The results show that emulsifier can effectively increase the cold storage capacity of hydrate, reduce the induction time of hydrate formation, and reduce the randomness of hydrate formation. The lower the temperature of emulsion systems, the better hydrate promotion effect. The hydrate formation/decomposition cycle experiments show that the emulsion system with Tween 80 has good stability, and the organic phase change emulsion improves the stability during the hydrate formation/decomposition cycle.

Key words: hydrate, surfactant, HCFC–141b, cold storage, phase change, emulsion, stability, induction time

CLC Number: 

  • TK 02

Fig.1

Hydrate formation experimental apparatus"

Table 1

Experimental systems"

实验编号 添加剂/%(mass) 实验温度/℃
E1 1%CA–DE 0.2
E2 1%CA–DE+0.5%Tween 80 0.2
E3 1%CA–DE+1%Tween 80 0.2
E4 1%CA–DE+2%Tween 80 0.2
E5 1%CA–DE+3%Tween 80 0.2
E6 1%CA–DE+5%Tween 80 0.2
E7 2%CA–DE+1%Tween 80 0.2
E8 3%CA–DE+1%Tween 80 0.2
E9 1%CA–DE+0.1%Span 80 0.2
E10 1%CA–DE+0.5%Span 80 0.2
E11 1%CA-DE+1%Span 80 0.2
E12 1%CA–DE+1%Tween80+0.1%Span 80 0.2
E13 1%CA–DE+1%Tween80+0.5%Span 80 0.2
E14 1%CA–DE+1%Tween80+1%Span 80 0.2
E15 1%CA–DE+1%Tween 80 1
E16 1%CA–DE+1%Tween 80 3

Fig.2

Comparison of stability of two emulsion systems"

Table 2

Hydrate formation induction time"

实验编号 实验温度/℃ 诱导时间/min 平均诱导时间/min

诱导时间

标准方差

E1 0.2 113,88,173 125 35.67
E2 0.2 28,42,121 64 40.94
E3 0.2 25,11,42 26 12.68
E4 0.2 71,150,201 141 53.48
E5 0.2 324,338,256 306 35.81
E6 0.2 467,621,436 508 80.90
E7 0.2 23,78,65 55 23.47
E8 0.2 115,116,76 102 18.62
E9 0.2 25,142,72 80 48.07
E10 0.2 45,17,56 39 16.42
E11 0.2 120,55,62 79 29.13
E12 0.2 40,69,76 62 15.58
E13 0.2 76,110,45 77 26.55
E14 0.2 26,158,254 146 93.47
E15 1 119,44,105 89 32.56
E16 3 127,212,312 217 75.61

Fig.3

Hydrate formation process"

Fig.4

Effect of temperature on hydrate formation"

Fig.5

Effect of surfactant on heat of hydrate dissociation"

Fig.6

Comparison of cycle stability of emulsion systems"

Table 3

Effect of cycle experiments on hydrate crystallization temperature"

实验编号 结晶温度/℃
第一次 第二次 第三次 第四次 第五次 第六次
E1 0.25 1.67 0.48 0.27 0.26 0.25
E3 0.25 4.49 4.26 4.17 3.65 3.82
E10 0.22 2.67 2.73 2.96 2.27 1.44
E12 0.24 3.73 3.70 3.62 3.45 2.96
1 谢应明, 魏晶晶, 刘道平, 等 . 四丁基氯化铵水合物的蓄冷特性[J]. 化工学报, 2010, 61(S2): 77-80.
Xie Y M , Wei J J , Liu D P , et al . The cold storage characteristics of tetrabutylammonium chloride hydrate [J]. CIESC Journal, 2010, 61(S2): 77-80.
2 Akiya T , Shimazaki T , Oowa M , et al . Formation conditions of clathrates between HFC alternative refrigerants and water [J]. International Journal of Thermophysics, 1999, 20(6): 1753-1763.
3 陈晶贵, 樊栓狮, 梁德青, 等 . HCFC–141b水合物空调蓄冷系统实验研究[J]. 化工学报, 2003, 54(S1): 125-130.
Chen J G , Fan S S , Liang D Q , et al . Experimental study on HCFC– 141b hydrate air conditioning cold storage system [J]. Journal of Chemical Industry and Engineering (China), 2003, 54(S1): 125-130.
4 郝文峰, 樊栓狮, 王金渠 . 搅拌对甲烷水合物生成的影响[J]. 天然气化工(C1化学与化工), 2005, 30(3): 5-7.
Hao W F , Fan S S , Wang J Q . Effects of stirring on the formation of methane hydrate [J]. Natural Gas Chemical Industry (C1 Chemistry and Chemical Engineering), 2005, 30(3): 5-7.
5 Ohmura R , Kashiwazaki S , Shiota S , et al . Structure-I and structure-H hydrate formation using water spraying [J]. Energy & Fuels, 2002, 16(5): 1141-1147.
6 Xu C G , Li X S , Lv Q N , et al . Hydrate-based CO2 (carbon dioxide) capture from IGCC (integrated gasification combined cycle) synthesis gas using bubble method with a set of visual equipment [J]. Energy, 2012, 44(1): 358-366.
7 Fesenko E E , Popov V I , Novikov V V , et al . Structure formation in water by the action of weak magnetic fields and xenon. Electron microscopy analysis [J]. Biofizika, 2002, 47(3): 393-394.
8 刘永红, 郭开华, 梁德青, 等 . 超声波作用下的制冷剂水合物结晶过程研究[J]. 工程热物理学报, 2003, 24(3): 385-387.
Liu Y H , Guo K H , Liang D Q , et al . Crystallization process of refrigerant hydrate under ultrasonic wave [J]. Journal of Engineering Thermophysics, 2003, 24(3): 385-387.
9 马鸿凯, 孙志高, 焦丽君, 等 . 添加剂对静态条件下HCFC–141b水合物生成的促进作用[J]. 制冷学报, 2016, 37(1): 101-105.
Ma H K , Sun Z G , Jiao L J , et al . Promoting effect of additives on the formation of HCFC–141b hydrate under static conditions [J]. Journal of Refrigeration, 2016, 37 (1): 101-105.
10 Moraveji M K , Ghaffarkhah A , Sadeghi A . Effect of three representative surfactants on experimental and theoretical investigation of methane hydrate induction methane hydrate formation rate and induction time [J]. Egyptian Journal of Petroleum, 2016, 26(2): 331-339.
11 徐勇军, 叶国兴, 杨晓西, 等 . 表面活性剂对水合物生成的影响及其应用前景[J]. 天然气工业, 2002, 22(1): 85-87.
Xu Y J , Ye G X , Yang X X , et al . Effect of surfactants on hydrate formation and its application prospects [J]. Natural Gas Industry, 2002, 22(1): 85-87.
12 章春笋, 樊栓狮, 郭彦坤, 等 . 不同类型表面活性剂对天然气水合物形成过程的影响[J]. 天然气工业, 2003, 23(1): 91-95.
Zhang C S , Fan S S , Guo Y K , et al . Effects of different types of surfactants on the formation of natural gas hydrates [J]. Natural Gas Industry, 2003, 23(1): 91-95.
13 Rahmati M , Manteghian M , Pahlavanzadeh H . Experimental and theoretical investigation of methane hydrate induction time in the presence of triangular silver nanoparticles [J]. Chemical Engineering Research & Design, 2017, 120: 325-332.
14 周诗岽, 余益松, 甘作全, 等 . 纳米石墨颗粒对气体水合物生成诱导时间的影响[J]. 天然气化工, 2015, 40(1): 60-64.
Zhou S Z , Yu Y S , Gan Z Q , et al . Influence of nanographite particles on gas hydrate formation induction time [J]. Natural Gas Chemical Industry, 2015, 40(1): 60-64.
15 Wang Y H , Lang X M , Fan S S . Accelerated nucleation of tetrahydrofuran (THF) hydrate in presence of ZIF-61 [J]. Journal of Energy Chemistry, 2012, 21(3): 299-301.
16 李娜, 马振魁 . 利用纳米粒子强化微乳液体系HCFC–141b水合物的生成[J]. 科学通报, 2011, 56(22): 1846-1853.
Li N , Ma Z K . Generation of HCFC–141b hydrate by microparticle-enhanced microemulsion system [J]. Chinese Science Bulletin, 2011, 56(22): 1846-1853.
17 Long F , Fan S S , Wan Y H , et al . Promoting effect of super absorbent polymer on hydrate formation [J]. Journal of Energy Chemistry, 2010, 19(3): 251-254.
18 胡亚飞, 蔡晶, 李小森 . 环戊烷-甲烷水合物生成过程的温度特性[J]. 化工进展, 2016, 35(5): 1418-1427.
Hu Y F , Cai J , Li X S . Temperature characteristics of cyclopentane-methane hydrate formation process [J]. Chemical Industry and Engineering Progress, 2016, 35(5): 1418-1427.
19 Wang M , Sun Z G , Qiu X H , et al . Hydrate dissociation equilibrium conditions for carbon dioxide + tetrahydrofuran [J]. Journal of Chemical & Engineering Data, 2017, 62(2): 812-815.
20 Sabil K M , Duarte A R C , Zevenbergen J , et al . Kinetic of formation for single carbon dioxide and mixed carbon dioxide and tetrahydrofuran hydrates in water and sodium chloride aqueous solution [J]. International Journal of Greenhouse Gas Control, 2010, 4(5): 798-805.
21 朱明贵, 孙志高, 杨明明, 等 . 有机相变材料促进HCFC–141b水合物生成实验[J]. 化工进展, 2017, 36(4): 1265-1269.
Zhu M G , Sun Z G , Yang M M , et al . Experimental study on the formation of HCFC–141b hydrate by organic phase change materials [J]. Chemical Industry and Engineering Progress, 2017, 36(4): 1265-1269.
22 Chen B , Xin F , Song X , et al . Kinetics of carbon dioxide hydration enhanced by phase change slurry of n-tetradecane [J]. Energy & Fuels, 2017, 31(4): 4245-4254.
23 陈彬, 辛峰, 宋小飞, 等 . 相变浆液中甲烷水合物的生成过程强化[J]. 化工学报, 2016, 67(8): 3202-3208.
Chen B , Xin F , Song X F , et al . Strengthening process of methane hydrate formation in phase change slurry [J]. CIESC Journal, 2016, 67(8): 3202-3208.
24 Nakajima M , Ohmura R , Mori Y H . Clathrate hydrate formation from cyclopentane-in-water emulsions [J]. Industrial & Engineering Chemistry Research, 2015, 47(22): 8933-8939.
25 周锡堂, 樊栓狮, 梁德青, 等 . HCFC–141b乳化液生成气体水合物[J]. 化工学报, 2007, 58(3): 728-732.
Zhou X T , Fan S S , Liang D Q , et al . Gas hydrate formation by HCFC–141b emulsion [J]. Journal of Chemical Industry and Engineering (China), 2007, 58(3): 728-732.
26 李璞, 张龙明, 覃小焕, 等 . 微乳液中R141b水合物快速生成实验研究[J]. 工程热物理学报, 2014, 35(12): 2358-2362.
Li P , Zhang L M , Qin X H , et al . Experimental study on rapid formation of R141b hydrate in microemulsion [J]. Journal of Engineering Thermophysics, 2014, 35 (12): 2358-2362.
27 赵国玺, 朱㻉瑶 . 表面活性剂作用原理[M]. 北京: 中国轻工业出版社, 2003: 38-39.
Zhao G X , Zhu Y Y . Principle of Surfactant Action [M]. Beijing: China Light Industry Press, 2003: 38-39.
28 杜建伟, 梁德青, 戴兴学, 等 . Span80促进甲烷水合物生成动力学研究[J]. 工程热物理学报, 2011, 32(2): 197-200.
Du J W , Liang D Q , Dai X X , et al . Investigation on Span80 promoting methane hydrate formation kinetic [J]. Journal of Engineering Thermophysics, 2011, 32(2): 197-200.
29 孙建华, 吴强, 张保勇 . 非离子型吐温系列表面活性剂对瓦斯水合物生成过程的影响[J]. 煤炭学报, 2006,(2): 191-195.
Sun J H , Wu Q , Zhang B Y . Effect of nonionic surfactant Tween on the process of gas hydrate formation [J]. Journal of China Coal Society, 2006, (2): 191-195.
30 Nourafkan E . Evaluation of adsorption of nonionic surfactants blend at water/oil interfaces [J]. Journal of Dispersion Science & Technology, 2017, 39(5): 665-675.
31 Barakat Y , Fortney L N , Schechter R S , et al . Criteria for structuring surfactants to maximize solubilization of oil and water(Ⅱ): Alkyl benzene sodium sulfonates [J]. Journal of Colloid & Interface Science, 1983, 92(2): 561-574.
32 Kaciev D . Nucleation: Basic Theory with Applications [M].Oxford: Butterworth Heinemann, 2000.
33 Davies S R , Hester K C , Lachance J W , et al . Studies of hydrate nucleation with high pressure differential scanning calorimetry [J]. Chemical Engineering Science, 2009, 64(2): 370-375.
34 李刚, 谢应明, 刘道平, 等 . 四丁基溴化铵-四氢呋喃系蓄冷水合物[J]. 过程工程学报, 2009, 9(1): 186-189.
Li G , Xie Y M , Liu D P , et al . Tetrabutylammonium bromide-tetrahydrofuran cold storage hydrate [J]. Chinese Journal of Process Engineering, 2009, 9(1): 186-189.
35 Ohmura R , Ogawa M , Yasuoka A , et al . Statistical study of clathrate-hydrate nucleation in a water/hydrochlorofluorocarbon system:  search for the nature of the “Memory Effect” [J]. Journal of Physical Chemistry B, 2003, 107(22): 5289-5293.
[1] Hua CHEN, Xiuli LIU, Yaxing YANG, Liqiong ZHONG, Lei WANG, Na GAO. Numerical simulation of foam metal copper/paraffin phase change thermal storage process [J]. CIESC Journal, 2019, 70(S1): 86-92.
[2] Sheng XU, Lingli LIU, Meng CAO, Shangxi ZHANG, Xin DAI, Yang LIU, Zhenxi WANG. Formation of framework supported pore for PVA/ZnO composite and Pb(Ⅱ) adsorption [J]. CIESC Journal, 2019, 70(S1): 130-140.
[3] Ning QIN, Qing MIN, Kaiyuan SHAO, Wenxiang HU. Synthesis of 3-methyl-benzidine hydrochloride [J]. CIESC Journal, 2019, 70(S1): 242-247.
[4] Siyu PENG, Cheng ZHENG, Taoyan MAO, Yuan WEI, Huafeng SONG. Microwave synthesis and properties of dioctadecyl tetrahydroxyethyl dibromopropane diammonium [J]. CIESC Journal, 2019, 70(S1): 202-210.
[5] Yanrao CHEN, Taoyan MAO, Cheng ZHENG. Microwave synthesis and properties of dioctadecyldihydroxyethyl ammonium bromide [J]. CIESC Journal, 2019, 70(S1): 226-234.
[6] Wenyu LI, Liangliang SUN, Yanping YUAN, Xiaoling CAO, Bo XIANG. Heat storage and release characteristics of solar phase change Kang and influence factors [J]. CIESC Journal, 2019, 70(5): 1761-1771.
[7] Qiang GAO, Hong LYU, Fan XIONG, Fei CHEN, Zeheng YANG, Weixin ZHANG. Preparation of LiFePO4/C plate cathode materials and their electrochemical properties [J]. CIESC Journal, 2019, 70(4): 1628-1634.
[8] Yinjiao SU, Xuan LIU, Lifeng LI, Xiaohang LI, Ping JIANG, Yang TENG, Kai ZHANG. Distribution characteristics of mercury speciation in coals with three different ranks [J]. CIESC Journal, 2019, 70(4): 1559-1566.
[9] Ziyi YUAN, Hua FAN, Deyin HOU, Kai WANG, Jun WANG. Effects of sodium dodecyl sulfate in DCMD process [J]. CIESC Journal, 2019, 70(4): 1455-1463.
[10] Shuai MOU, Changying ZHAO, Zhiguo XU. Pool boiling heat transfer performance and mechanism of square copper pillar arrays with partially-modified surface [J]. CIESC Journal, 2019, 70(4): 1291-1301.
[11] Shunhao WANG, Wenli ZHU, Zhenggen HU, Rui ZHOU, Liu YU, Bin WANG, Xiaobin ZHANG. Numerical simulation and experimental validation of evaporation characteristics of scaled liquid hydrogen tank [J]. CIESC Journal, 2019, 70(3): 840-849.
[12] Yaowu WANG, Jianping PENG, Yuezhong DI, Pengcheng HAO. Mechanism of deterioration for dry barrier material in aluminum electrolysis cells [J]. CIESC Journal, 2019, 70(3): 1035-1041.
[13] Xiaoxue CAO, Shaochang JI, Wenjie KUANG, Anping LIAO, Ping LAN, Jinyan ZHANG. Solubility and ternary phase diagram of azithromycin dihydrate in water-organic solvent [J]. CIESC Journal, 2019, 70(3): 817-829.
[14] Qichao XU, Jinbo JIANG, Xudong PENG, Jiyun LI, Yuming WANG. Unified model and geometrical optimization of bi-directional groove of dry gas seal based on genetic algorithm [J]. CIESC Journal, 2019, 70(3): 995-1005.
[15] Pan WEI, Jiabang YU, Zengxu GUO, Xiaohu YANG, Yaling HE. Experimental visualization on thermal energy storage enhancement through metal foam filled annuli [J]. CIESC Journal, 2019, 70(3): 850-856.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LING Lixia, ZHANG Riguang, WANG Baojun, XIE Kechang. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] LEI Zhigang, LONG Aibin, JIA Meiru, LIU Xueyi. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] SU Haifeng, LIU Huaikun, WANG Fan, LÜXiaoyan, WEN Yanxuan. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] WANG Jianlin, XUE Yaoyu, YU Tao, ZHAO Liqiang. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] SUN Fubao, MAO Zhonggui, ZHANG Jianhua, ZHANG Hongjian, TANG Lei, ZHANG Chengming, ZHANG Jing, ZHAI Fangfang. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] Gao Ruichang, Song Baodong and Yuan Xiaojing( Chemical Engineering Research Center, Tianjin University, Tianjin 300072). LIQUID FLOW DISTRIBUTION IN GAS - LIQUID COUNTER - CONTACTING PACKED COLUMN[J]. , 1999, 50(1): 94 -100 .
[7] Su Yaxin, Luo Zhongyang and Cen Kefa( Institute of Thermal Power Engineering , Zhejiang University , Hangzhou 310027). A STUDY ON THE FINS OF HEAT EXCHANGERS FROM OPTIMIZATION OF ENTROPY GENERATION[J]. , 1999, 50(1): 118 -124 .
[8] Luo Xiaoping(Department of Industrial Equipment and Control Engineering , South China University of Technology, Guangzhou 510641)Deng Xianhe and Deng Songjiu( Research Institute of Chemical Engineering, South China University of Technology, Guangzhou 5106. RESEARCH ON FLOW RESISTANCE OF RING SUPPORT HEAT EXCHANGER WITH LONGITUDINAL FLUID FLOW ON SHELL SIDE[J]. , 1999, 50(1): 130 -135 .
[9] Jin Wenzheng , Gao Guangtu , Qu Yixin and Wang Wenchuan ( College of Chemical Engineering, Beijing Univercity of Chemical Technology, Beijing 100029). MONTE CARLO SIMULATION OF HENRY CONSTANT OF METHANE OR BENZENE IN INFINITE DILUTE AQUEOUS SOLUTIONS[J]. , 1999, 50(2): 174 -184 .
[10]

LI Qingzhao;ZHAO Changsui;CHEN Xiaoping;WU Weifang;LI Yingjie

.

Combustion of pulverized coal in O2/CO2 mixtures and its pore structure development

[J]. , 2008, 59(11): 2891 -2897 .