CIESC Journal ›› 2019, Vol. 70 ›› Issue (S1): 193-201.doi: 10.11949/j.issn.0438-1157.20181282

• Energy and environmental engineering • Previous Articles     Next Articles

Thermodynamics simulation of biogas fueled chemical looping reforming for H2 generation using NiO/Ca2Al2SiO7

Daofeng MEI1,2(),Haibo ZHAO3,Shuiping YAN1,2()   

  1. 1. Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, Hubei, China
    2. College of Engineering, Huazhong Agricultural University, Wuhan 430070, Hubei, China
    3. State Key Laboratory of Coal Combustion, Huazhong University of Science & Technology, Wuhan 430074, Hubei, China
  • Received:2018-10-31 Revised:2018-12-03 Online:2019-03-31 Published:2019-04-26
  • Contact: Shuiping YAN E-mail:dmei@mail.hzau.edu.cn;yanshp@mail.hzau.edu.cn

Abstract:

Thermodynamics analyses were carried out in biogas fueled chemical looping reforming (CLR) process for H2 generation, where the main component of cement Ca2Al2SiO7 was used as a support for NiO/Ca2Al2SiO7 oxygen carrier. Around 430 cases for CLR were studied via a home-built MATLAB? code, considering the effects of NiO loading yNiO, oxygen carrier circulation rate Fs, oxygen carrier conversion variation ΔXs, steam concentration xH2O and air reactor temperature TAR. The global enthalpy variation ΔH can be easily tuned to ΔH=0, i.e. CLRa state, by varying the (NiO+Ca2Al2SiO7)/biogas ratio. Under CLRa state, increase of TAR and ΔXs can lead to the decrease of H2 yield, while rising of Fs would result in the higher H2 yield. The simulation suggests that the optimized H2 yield of 1.57 (m3 H2)?(m3 biogas)-1 can be achieved with NiO loading lower than 10%(mass), TAR close to 1150 K, ΔXs lower than 0.25, Fs higher than 2 kg?s-1 and xH2O lower than 54.5%(vol). Heat balance of the global FR, AR and WGS reactors showed that the CLRa can be run under auto-thermal condition, meanwhile heat at exits of reactors can be recovered to be used in the preheating of gases entering reactors.

Key words: hydrogen production, CO2 capture, NiO based oxygen carrier, biofuel, thermodynamics

CLC Number: 

  • TK 16

Fig. 1

Schematic diagram of CLRa using NiO as oxygen carrier and biogas as fuel"

Table 1

Values of h0, ai, bi and ci for component i in gaseous and solid phases"

组分类别

h0i /

(kJ?mol-1)

ai /

(J?(mol?K)-1)

bi /

(J?(mol?K)-1)

ci /

(J?(mol?K)-1)

NiO-212.5156.05-1.03×10-28.50×10-6
Ni15.4220.381.59×10-28.50×10-6
Ca2Al2SiO7-3904.86237.588.50×10-3-2.00×10-5
CH4-74.8719.866.04×10-2-1.07×10-5
H2O-241.8330.419.54×10-31.18×10-6
CO2-393.5133.812.32×10-2-4.65×10-6
CO-110.5426.886.94×10-3-8.21×10-7
H2029.41-1.55×10-32.35×10-6
O2027.657.99×10-3-1.37×10-6
N2027.335.13×10-33.97×10-8

Table 2

Main parameters and values used for simulations"

项目

氧载体组成/%(质量)

NiO: 10~100,

Ca2Al2SiO7: 0~90

沼气组成/%(体积)CH4: 60, CO2: 40
氧载体循环流率Fs/(kg?s-1)0.2~10.2
氧载体转化率变化ΔXs0.1~1.0
FR进口处水蒸气浓度xH2O/%(体积)37.5~78.2
AR温度TAR/K1150~2500
FR温度TFR/K1150

Fig.2

Effects of (NiO+Ca2Al2SiO7)/biogas mass ratio on gas molar flow rate at FR exit and ΔH"

Fig.3

Effect of AR temperature TAR on gas concentration and (NiO+Ca2Al2SiO7)/biogas ratio"

Fig.4

Effect of ΔXs on H2 yield using various NiO loadings in oxygen carrier"

Fig.5

Effect of Fs on H2 yield, ΔXs and TAR"

Fig.6

Effect of H2O/biogas ratio at FR inlet on gas concentration and (NiO+Ca2Al2SiO7)/biogas ratio"

Fig.7

Heat flow demonstration of a typical CLRa"

Table 3

Distribution of absorbed heat and recoverable heat during typical CLRa"

热量符号热量值/MWth描述合计
Q10.05吸热
Q20.12吸热
Q30.04吸热0.21
Q40.07放热
Q50.13放热
Q60.06放热0.26
1 MattissonT, LyngfeltA. Applications of chemical-looping combustion with capture of CO2[C]//Second Nordic Minisymposium on Carbon Dioxide Capture and Storage. Göteborg, Sweden, 2001.
2 黄振, 何方, 赵坤, 等. 基于晶格氧的甲烷化学链重整制合成气[J]. 化学进展, 2012, 24(8): 1599-1609.
HuangZ, HeF, ZhaoK, et al. Synthesis gas production by chemical-looping reforming of methane using lattice oxygen[J]. Progress in Chemistry, 2012, 24(8): 1599-1609.
3 OrtizM, AbadA, de DiegoL F, et al. Optimization of hydrogen production by chemical-looping auto-thermal reforming working with Ni-based oxygen-carriers[J]. Int. J. Hydrogen Energy, 2011, 36: 9663-9672.
4 阳绍军, 徐祥, 田文栋. 基于化学链燃烧的吸收剂引导的焦炉煤气水蒸气重整制氢过程模拟[J]. 化工学报, 2007, 58(9): 2363-2368.
YangS J, XuX, TianW D. Simulation for hydrogen production from sorption enhanced coke-oven gas steam reforming based on chemical looping combustion[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(9): 2363-2368.
5 李孔斋, 王华, 魏永刚, 等. 晶格氧部分氧化甲烷制合成气[J]. 化学进展, 2008, 20(9): 1306-1314.
LiK Z, WangH, WeiY G, et al. Partial oxidation of methane to synthesis gas using lattice oxygen[J]. Progress in Chemistry, 2008, 20(9): 1306-1314.
6 LuoM, YiY, WangS Z, et al. Review of hydrogen production using chemical-looping technology[J]. Renewable Sustainable Energy Rev., 2018, 81: 3186-3214.
7 曾亮, 巩金龙. 化学链重整直接制氢技术进展[J]. 化工学报, 2015, 66(8): 2854-2862.
ZengL, GongJ L. Advances in chemical looping reforming for direct hydrogen production[J]. CIESC Journal, 2015, 66(8): 2854-2862.
8 ZafarQ, MattissonT, GevertB. Integrated hydrogen and power production with CO2 capture using chemical-looping reforming-Redox reactivity of particles of CuO, Mn2O3, NiO, and Fe2O3 using SiO2 as a support[J]. Ind. Eng. Chem. Res., 2005, 44: 3485-3496.
9 何映龙, 于敦喜, 雷体蔓, 等. 铁基氧载体化学链CO2重整CH4方法制备合成气[J]. 化工学报, 2016, 67(12): 5222-5228.
HeY L, YuD X, LeiT M, et al. Chemical looping CO2/CH4 reforming using Fe-based oxygen carrier for syngas production[J]. CIESC Journal, 2016, 67(12): 5222-5228.
10 王博, 刘永卓, 王东营, 等. 废弃活性炭化学链气化制富氢合成气[J]. 化工学报, 2017, 68(9): 3541-3550.
WangB, LiuY Z, WangD Y, et al. Chemical looping gasification of waste activated carbon for hydrogen-enriched syngas production[J]. CIESC Journal, 2017, 68(9): 3541-3550.
11 WeiG Q, HeF, HuangZ, et al. Chemical-looping reforming of methane using iron based oxygen carrier modified with low content nickel[J]. Chin. J. Chem., 2014, 32: 1271-1280.
12 RydénM, LyngfeltA, MattissonT. Synthesis gas generation by chemical-looping reforming in a continuously operating laboratory reactor[J]. Fuel, 2006, 85: 1631-1641.
13 de DiegoL F, OrtizM, García-LabianoF, et al. Hydrogen production by chemical-looping reforming in a circulating fluidized bed reactor using Ni-based oxygen carriers[J]. J. Power Sources, 2009, 192: 27-34.
14 AdánezJ, AbadA, García-LabianoF, et al. Progress in chemical-looping combustion and reforming technologies[J]. Prog. Energy Combust. Sci., 2012, 38: 215-282.
15 PröllT, Bolhàr-NordenkampfJ, KolbitschP, et al. Syngas and a separate nitrogen/argon stream via chemical looping reforming —a 140 kW pilot plant study[J]. Fuel, 2010, 89: 1249-1256.
16 ZhaoX, ZhouH, SikarwarV S, et al. Biomass-based chemical looping technologies: the good, the bad and the future[J]. Energy Environ. Sci., 2017, 10: 1885-1910.
17 MendiaraT, García-LabianoF, AbadA, et al. Negative CO2 emissions through the use of biofuels in chemical looping technology: a review[J]. Appl. Energy, 2018, 232: 657-684.
18 JiangB, DouB L, SongY C, et al. Hydrogen production from chemical looping steam reforming of glycerol by Ni-based oxygen carrier in a fixed-bed reactor[J]. Chem. Eng. J., 2015, 280: 459-467.
19 DouB L, ZhangH, CuiG M, et al. Hydrogen production by sorption-enhanced chemical looping steam reforming of ethanol in an alternating fixed-bed reactor: sorbent to catalyst ratio dependencies[J]. Energy Convers. Manage., 2018, 155: 243-252.
20 ZhaoH B, GuoL, ZouX X. Chemical-looping auto-thermal reforming of biomass using Cu-based oxygen carrier[J]. Appl. Energy, 2015, 157: 408-415.
21 GuoL, ZhaoH B, ZhengC G. Synthesis gas generation by chemical-looping reforming of biomass with natural copper ore as oxygen carrier[J]. Waste Biomass Valorization, 2015, 6: 81-89.
22 OmoniyiO A, DupontV. Chemical looping steam reforming of acetic acid in a packed bed reactor[J]. Appl. Catal., B, 2018, 226: 258-268.
23 ZinR M, RossA B, JonesJ M, et al. Hydrogen from ethanol reforming with aqueous fraction of pine pyrolysis oil with and without chemical looping[J]. Bioresour. Technol., 2015, 176: 257-266.
24 WangW J, CaoY Y. A combined thermodynamic and experimental study on chemical-looping ethanol reforming with carbon dioxide capture for hydrogen generation[J]. Int. J. Energy Res., 2013, 37: 25-34.
25 García-LabianoF, García-DíezE, de DiegoL F, et al. Syngas/H2 production from bioethanol in a continuous chemical-looping reforming prototype[J]. Fuel Process. Technol., 2015, 137: 24-30.
26 García-DíezE, García-LabianoF, de DiegoL F, et al. Optimization of hydrogen production with CO2 capture by autothermal chemical-looping reforming using different bioethanol purities[J]. Appl. Energy, 2016, 169: 491-498.
27 殷上轶, 宋涛. CO2气氛下准东煤化学链燃烧特性研究[J]. 化工学报, 2018, 69(9): 3954-3964.
YinS Y, SongT. Zhundong coal chemical looping combustion performance using CO2 as gasification agent[J]. CIESC Journal, 2018, 69(9): 3954-3964.
28 TianX, ZhaoH B, MaJ C. Cement bonded fine hematite and copper ore particles as oxygen carrier in chemical looping combustion[J]. Appl. Energy, 2017, 204: 242-253.
29 BarinI. Thermochemical Data of Pure Substances[M]. Weiheim: Wiley-VCH, 2004.
30 SatterfieldC N. Heterogeneous Catalysis in Industrial Practice[M]. Malabar: Krieger Publishing Company, 1991.
[1] Fanrui MENG, Boyang LI, Xianchun LI, Shuang QIU. Catalysis effects of K2CO3 for gasification of semi-coke [J]. CIESC Journal, 2019, 70(S1): 99-109.
[2] Shuang ZHANG, Lei ZHAO, Lin GAO, Hua LIU. Exploration on thermo-mechanical characteristics of energy piles with double-U pipes buried in parallel by means of numerical simulations [J]. CIESC Journal, 2019, 70(5): 1750-1760.
[3] Qin WANG, Bingjian ZHANG, Chang HE, Qinglin CHEN. Solvent evaluation model base on energy consumption objective for aromatic extraction distillation units [J]. CIESC Journal, 2019, 70(5): 1815-1822.
[4] Yamin LIU, Lei PENG, Fengying SU, Xiangxiang WANG, Yizhen HUANG, Zaichun LIN, Xiaojing YU, Yishan PEI. Study of CO2 adsorption on amine functionalized graphene oxide porous materials [J]. CIESC Journal, 2019, 70(5): 2016-2024.
[5] Feng LUO, Li LIN, Zhenchen LI, Wenyu LI, Xianlin CHEN, Sha SHA, Tao LUO. Electrochemical reactions and reactors for biomass valorisation [J]. CIESC Journal, 2019, 70(3): 801-816.
[6] Li ZHANG, Wenwu WANG, Zhi’en ZHANG, Peisheng LIU, Jiangbo WEN, Liang DONG. A waste heat recovery power generation system combined with natural gas liquefaction and CO2 capture [J]. CIESC Journal, 2019, 70(1): 261-270.
[7] Yi ZHU, Hao WANG, Liping CHEN, Zichao GUO, Zhongqi HE, Wanghua CHEN. Calculate time to maximum rate under adiabatic condition by numerical calculation method [J]. CIESC Journal, 2019, 70(1): 379-387.
[8] LIANG Xingyu, LIU Hongxin, CAO Xiang, SHAO Liangliang, ZHANG Chunlu. Performance analysis of a novel compressor-ejector cycle with two-stage evaporation [J]. CIESC Journal, 2018, 69(S2): 26-30.
[9] LI Ran, LIU Jingjun, LI Yuxing, YIN Yue, ZHU Jianlu, CHEN Wenjie, WANG Wuchang. Selection of state equations for evaporation calculation in LNG receiving terminal [J]. CIESC Journal, 2018, 69(S2): 31-37.
[10] LIU Zhan, FENG Yuyang, LEI Gang, LI Yanzhong. Coupled thermal dynamic performance in cryogenic liquid oxygen tank under slosh excitation [J]. CIESC Journal, 2018, 69(S2): 61-67.
[11] XIE Huaqing, ZHANG Weidong, LIN Heyong, YU Qingbo. Hydrogen production via sorption-enhanced steam reforming of tar [J]. CIESC Journal, 2018, 69(S2): 466-472.
[12] ZOU Huiming, LI Xuan, TANG Mingsheng, SHAO Shuangquan, TIAN Changqing. Experimental investigation on refrigeration performance of R290 linear compressor [J]. CIESC Journal, 2018, 69(S2): 480-484.
[13] WANG Lin, HE Hui, WANG Zhanwei, SONG Zun, LIANG Kunfeng, MA Aihua. Applicability of heat pump air-conditioning system with groundwater preheating fresh air [J]. CIESC Journal, 2018, 69(S2): 485-491.
[14] ZHENG Lifang, WANG Zhaozhong, XIE Yajie, YUE Lina, WANG Li. Kinetic study on thermal decomposition of GFRP under γ irradiation [J]. CIESC Journal, 2018, 69(S1): 161-169.
[15] WANG Feng, LIU Yanyun, CHEN Bohong, WANG Guoqiang. Methanol steam reforming for hydrogen production with waste heat recovery-effects of operation parameters [J]. CIESC Journal, 2018, 69(S1): 102-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LING Lixia, ZHANG Riguang, WANG Baojun, XIE Kechang. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] LEI Zhigang, LONG Aibin, JIA Meiru, LIU Xueyi. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] SU Haifeng, LIU Huaikun, WANG Fan, LÜXiaoyan, WEN Yanxuan. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] WANG Jianlin, XUE Yaoyu, YU Tao, ZHAO Liqiang. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] SUN Fubao, MAO Zhonggui, ZHANG Jianhua, ZHANG Hongjian, TANG Lei, ZHANG Chengming, ZHANG Jing, ZHAI Fangfang. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] Gao Ruichang, Song Baodong and Yuan Xiaojing( Chemical Engineering Research Center, Tianjin University, Tianjin 300072). LIQUID FLOW DISTRIBUTION IN GAS - LIQUID COUNTER - CONTACTING PACKED COLUMN[J]. , 1999, 50(1): 94 -100 .
[7] Su Yaxin, Luo Zhongyang and Cen Kefa( Institute of Thermal Power Engineering , Zhejiang University , Hangzhou 310027). A STUDY ON THE FINS OF HEAT EXCHANGERS FROM OPTIMIZATION OF ENTROPY GENERATION[J]. , 1999, 50(1): 118 -124 .
[8] Luo Xiaoping(Department of Industrial Equipment and Control Engineering , South China University of Technology, Guangzhou 510641)Deng Xianhe and Deng Songjiu( Research Institute of Chemical Engineering, South China University of Technology, Guangzhou 5106. RESEARCH ON FLOW RESISTANCE OF RING SUPPORT HEAT EXCHANGER WITH LONGITUDINAL FLUID FLOW ON SHELL SIDE[J]. , 1999, 50(1): 130 -135 .
[9] Jin Wenzheng , Gao Guangtu , Qu Yixin and Wang Wenchuan ( College of Chemical Engineering, Beijing Univercity of Chemical Technology, Beijing 100029). MONTE CARLO SIMULATION OF HENRY CONSTANT OF METHANE OR BENZENE IN INFINITE DILUTE AQUEOUS SOLUTIONS[J]. , 1999, 50(2): 174 -184 .
[10]

LI Qingzhao;ZHAO Changsui;CHEN Xiaoping;WU Weifang;LI Yingjie

.

Combustion of pulverized coal in O2/CO2 mixtures and its pore structure development

[J]. , 2008, 59(11): 2891 -2897 .