CIESC Journal ›› 2019, Vol. 70 ›› Issue (S1): 86-92.doi: 10.11949/j.issn.0438-1157.20181268

• Fluid dynamics and transport phenomena • Previous Articles     Next Articles

Numerical simulation of foam metal copper/paraffin phase change thermal storage process

Hua CHEN(),Xiuli LIU(),Yaxing YANG,Liqiong ZHONG,Lei WANG,Na GAO   

  1. Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin 300134, China
  • Received:2018-10-29 Revised:2018-11-15 Online:2019-03-31 Published:2019-04-26
  • Contact: Xiuli LIU E-mail:florahchen@163.com;1306594284@qq.com

Abstract:

The uniformity and stability of the paraffin temperature distribution in the phase change heat storage box with the addition of foam copper into the pure paraffin were predicted by Fluent software. The simulated results showed that the addition of foam copper greatly improved the heat recovery performance of paraffin and shortened paraffin phase transition time. Moreover, after adding foam copper, the paraffin inside temperature difference decreased significantly, the temperature distribution became more uniform, and top overheating and bottom un-melting caused by nature convection were effectively alleviated. The average error between the simulated results and test data were within 15.7%, which was in good agreement with the measured values.

Key words: phase change heat storage, foamed metal copper, condensation heat recovery, numerical simulation, convection, heat conduction

CLC Number: 

  • TU 831.6

Fig.1

Physical model of phase change thermal storage device"

Fig.2

Box structure and thermocouple measuring point layout"

Fig.4

Change of liquid phase rate over time during phase transition in paraffin phase change heat storage tank"

Fig.5

Comparison of paraffin liquid phase ratio of pure paraffin and foamed copper"

Fig.6

Variation of temperature field with time during phase transition in paraffin phase change heat storage tank"

Fig.7

Comparison of temperature simulation value of phase change box at test point 1"

Fig .8

Comparison of temperature simulation values of phase change box at test point 2"

Fig.9

Comparison of temperature simulation values of phase change box at test point 3"

1 王侃宏, 谷铁柱, 桂林平, 等. 蓄热技术在太阳能地源热泵中的应用及模拟[J]. 河北工程大学学报(自然科学版), 2008,(1): 63-67.
WangK H, GuT Z, GuiL P, et al. Application and simulation of thermal storage technology in solar-ground source heat pump[J]. Journal of Hebei University of Engineering (Natural Science Edition), 2008,(1): 63-67.
2 高轩. Y型纵翅片管式相变蓄热过程模拟与优化[D]. 兰州: 兰州理工大学, 2016.
GaoX. Simulation and optimization of Y-type longitudinal finned tubular phase change heat storage process [D]. Lanzhou: Lanzhou University of Technology, 2016.
3 柳文洁. 热水蓄热罐在热电联产供热系统中的应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
LiuW J. Application of hot water storage tank in co-generation heat supply system [D]. Harbin: Harbin Institute of Technology, 2016.
4 李东, 张学湛, 丁国伟. 低热值煤气双蓄热技术在薄板坯连铸连轧辊底式加热炉应用的探讨[C]//全国薄板坯连铸连轧生产技术研讨会. 本溪: 中国金属学会, 2017: 134-140.
LiD, ZhangX Z, DingG W. Discussion on the application of low calorific value gas double-storage technology in the heating furnace of thin slab continuous casting and rolling[C]// Proceedings of National Symposium on Thin Slab Continuous Casting and Rolling Technology. Benxi: China Institute of Metals, 2017: 134-140.
5 鲍恩财, 曹晏飞, 邹志荣, 等. 节能日光温室蓄热技术研究进展[J]. 农业工程学报, 2018, 34(6): 1-14.
BaoE C, CaoY F, ZouZ R, et al. Research progress of heat storage technology in energy-saving solar greenhouses [J]. Journal of Agricultural Engineering, 2018, 34(6): 1-14.
6 杨洋. 乳品厂的余热回收应用及板式换热器传热的研究[D]. 哈尔滨: 哈尔滨商业大学, 2016.
YangY. Waste heat recovery application of dairy plant and heat transfer of plate heat exchanger [D]. Harbin: Harbin University of Commerce, 2016.
7 李广华. 基于两种热力循环的内燃机余热回收系统的研究[D]. 天津: 天津大学, 2016.
LiG H. Research on residual heat recovery system of internal combustion engine based on two kinds of thermodynamic cycles [D]. Tianjin: Tianjin University, 2016.
8 冯红翠. 基于超结构MINL P模型及遗传算法的烧结余热发电系统优化设计[D]. 杭州: 浙江大学, 2015.
FengH C. Optimization design of sintering waste heat power generation system based on superstructure MINLP model and genetic algorithm[D]. Hangzhou: Zhejiang University, 2015.
9 徐治国, 赵长颖, 纪育楠, 等. 中低温相变蓄热的研究进展[J]. 储能科学与技术, 2014, 3(3): 179-190.
XuZ G, ZhaoC Y, JiY N, et al. Research progress of medium and low temperature phase change heat storage [J]. Energy Storage Science and Technology, 2014, 3(3): 179-190.
10 李文昕.绿色精量消费模式下的城市规划与设计策略研究[D]. 长沙: 湖南大学, 2010.
LiW X. Study on urban planning and design strategy under green precision consumption mode[D]. Changsha: Hunan University, 2010.
11 史德福. 三种不同冷凝热回收方式下空调系统性能研究[D]. 天津: 天津商业大学, 2013.
ShiD F. Study on the performance of air conditioning system under three different condensing heat recovery modes [D]. Tianjin: Tianjin University of Commerce, 2013.
12 刘芬, 祝仰勇. 热泵精馏技术在煤焦化工艺中的应用分析[J]. 山东冶金, 2012, 34(2): 57-58.
LiuF, ZhuY Y. Application analysis of heat pump distillation technology in coal coking process[J]. Shandong Metallurgy, 2012, 34(2): 57-58.
13 张川.采用小温差换热末端的空气源热泵空调系统性能研究[D]. 上海: 上海交通大学, 2015.
ZhangC. Study on the performance of air source heat pump air conditioning system with small temperature difference heat exchange end [D]. Shanghai: Shanghai Jiao Tong University, 2015.
14 李俊. 基于PostgreSQL集群的能源数据采集存储系统的研究与实现[D]. 广州: 华南理工大学, 2013.
LiJ. Research and implementation of energy data acquisition and storage system based on PostgreSQL cluster[D]. Guangzhou: South China University of Technology, 2013.
15 胡振东, 王腾跃, 王惠文. 提高热水器能源利用率——一种基于逆流热交换的热水器余热回收装置研究[J]. 环境与发展, 2017, 29(6): 108-109.
HuZ D, WangT Y, WangH W. Improving energy efficiency of water heater—a study on waste heat recovery device of water heater based on counter current heat exchange[J]. Environment and Development, 2017, 29(6): 108-109.
16 王倩. 我国能源消费现状及其优化策略[J]. 商业经济研究, 2018,(17): 40-42.
WangQ. The status quo of energy consumption in china and its optimization strategy[J]. Commercial Economic Research, 2018,(17): 40-42.
17 马俊. 公共建筑可再生能源利用率计算方法研究[J]. 绿色建筑, 2018, 10(2):29-31.
MaJ. Study on calculation method of renewable energy utilization rate of public buildings[J]. Green Building, 2018, 10(2): 29-31.
18 刘佳佳. 相变蓄热器性能与强化传热研究[D].北京:华北电力大学, 2017.
LiuJ J. Research on performance and enhanced heat transfer of phase change accumulator [D]. Beijing:North China Electric Power University, 2017.
19 梁之西, 王海月, 祁祥松, 等. 基于Fluent软件的管道的流场数值模拟[J]. 南方农机, 2017, 48(16):111.
LiangZ X, WangH Y, QiX S, et al. Numerical simulation of flow field of pipeline based on Fluent software[J]. China Southern Agricultural Machinery, 2017, 48(16): 111.
20 雷娅蓉. 基于Fluent软件在变频多联机设计中的应用分析[J]. 科技创新与应用, 2018, 1(24): 151-152.
LeiY R. Application analysis of frequency-based line design based on Fluent software[J]. Science & Technology Innovation and Application, 2018, 1(24): 151-152.
21 刘宇飞, 章学来, 华维三, 等. 相变蓄热式集热器蓄放热数值与实验分析[J]. 太阳能学报, 2017, 38(9): 2486-2492.
LiuY F, ZhangX L, HuaW S, et al. Numerical and experimental analysis of heat storage and release of phase change regenerative collectors[J]. Acta Energiae Solaris Sinica, 2017, 38(9): 2486-2492.
22 于萍, 郭华锋. FLUENT软件在工程流体力学教学中的应用[J]. 教育教学论坛, 2018, 18(16): 271-272.
YuP, GuoH F. Application of FLUENT software in engineering fluid mechanics teaching[J]. Education and Teaching Forum, 2018, 18(16): 271-272.
23 康艳兵, 张寅平, 江亿, 等. 相变蓄热球体堆积床传热模型及热性能分析[J]. 清华大学学报(自然科学版), 2000, 40(2): 106-109.
KangY B, ZhangY P, JiangY, et al. Heat transfer model and thermal performance analysis of phase change heat storage sphere packed bed[J]. Journal of Tsinghua University (Science and Technology), 2000, 40(2): 106-109.
24 崔海亭, 袁修干, 侯欣宾. 高温固液相变蓄热容器的研究与发展[J]. 太阳能学报, 2002, 23(3): 383-386.
CuiH T, YuanX G, HouX B. Research and development of high temperature solid-liquid phase change heat storage containers[J]. Journal of Solar Energy, 2002, 23(3): 383-386.
25 邢玉明, 袁修干, 王长和. 空间站高温固液相变蓄热容器的实验研究[J]. 航空动力学报, 2001, 3(161): 74-79.
XingY M, YuanX G, WangC H. Experimental study on high temperature solid-liquid phase change heat storage vessel in space station[J]. Journal of Aerospace Power, 2001, 3(161): 74-79.
26 PyX, OlivesR, MauranS. Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material[J]. International Journal of Heat & Mass Transfer, 2001, 44(14): 2727-2737.
27 王俊. 石蜡熔化蓄热的实验和理论研究[D]. 西安: 西安交通大学, 2002.
WangJ. Experimental and theoretical study on the melting and heat storage of paraffin[D]. Xi an: Xi an Jiaotong University, 2002.
28 程文龙, 韦文静. 高孔隙率泡沫金属相变材料储能、传热特性[J]. 太阳能学报, 2007, 28(7): 739-744.
ChengW L, WeiW J. Energy storage and heat transfer characteristics of high porosity foam metal phase change materials [J]. Journal of Solar Energy, 2007, 28(7): 739-744.
29 夏莉, 张鹏, 周圆, 等. 石蜡与石蜡/膨胀石墨复合材料充/放热性能研究[J]. 太阳能学报, 2010, 31(5): 610-614.
XiaL, ZhangP, ZhouY, et al. Study on charge/discharge performance of paraffin and paraffin/expanded graphite composites [J]. Journal of Solar Energy, 2010, 31(5): 610-614.
30 朱家玲, 李慧, 张伟. 螺旋管式相变蓄热过程的数值模拟与系统优化[J]. 天津大学学报(自然科学与工程技术版), 2012,(10): 875-880.
ZhuJ L, LiH, ZhangW. Numerical simulation and system optimization of spiral tube phase change thermal storage process[J]. Journal of Tianjin University (Natural Science and Engineering Technology), 2012,(10): 875-880.
[1] Hao YANG, Eryan YAN. Simulation research of microwave heating efficiency for beamed energy thruster [J]. CIESC Journal, 2019, 70(S1): 93-98.
[2] Yaxiao TIAN, Naiyong WANG, Changxing LI, Wenjing DU. Experimental and numerical study of cooling characteristics of foam nickel plate [J]. CIESC Journal, 2019, 70(S1): 79-85.
[3] Nenglian FENG, Ruijin MA, Longke CHEN, Shikang DONG, Xiaofeng WANG, Xingyu ZHANG. Heat transfer characteristics of honeycomb liquid-cooled power battery module [J]. CIESC Journal, 2019, 70(5): 1713-1722.
[4] Yuting CHEN, Yanyan XU, Lei WANG, Shuang YE, Weiguang HUANG. Effect of evaporator heat transfer process on selection of mixture and operating condition in ORC system [J]. CIESC Journal, 2019, 70(5): 1723-1733.
[5] Shuang ZHANG, Lei ZHAO, Lin GAO, Hua LIU. Exploration on thermo-mechanical characteristics of energy piles with double-U pipes buried in parallel by means of numerical simulations [J]. CIESC Journal, 2019, 70(5): 1750-1760.
[6] Wenyu LI, Liangliang SUN, Yanping YUAN, Xiaoling CAO, Bo XIANG. Heat storage and release characteristics of solar phase change Kang and influence factors [J]. CIESC Journal, 2019, 70(5): 1761-1771.
[7] Jingxian WANG, Youlin ZHENG, Heng HU, Bei WEI, Qi LI, Dapeng HU. Experimental research on flow mechanism analysis in oscillating tube of double-opening wave refrigerator [J]. CIESC Journal, 2019, 70(4): 1302-1308.
[8] Xuan WU, Xiaorui LI, Jun MA, Mengzhu QIN, Yahui ZHOU, Haiguang LI. Behavior characteristics of bubble formation under various nozzle immersion modes [J]. CIESC Journal, 2019, 70(3): 901-912.
[9] Xin ZHOU, Ledong DENG, Hong WANG, Xun ZHU, Rong CHEN, Qiang LIAO, Yudong DING. Effect of cooled cylindrical surface on droplet dynamic behavior [J]. CIESC Journal, 2019, 70(3): 883-891.
[10] Chuangang CHEN, Xuexing DING, Junjie LU, Weizheng ZHANG, Jinlin CHEN. Effect of friction pair interface micro-texture sequence on gas sealing performance [J]. CIESC Journal, 2019, 70(3): 1016-1026.
[11] Suli SHI, Yuanwei LU, Qiang YU, Yuting WU. Optimization of heat removal modes for heat exchanger in molten salt single storage tank [J]. CIESC Journal, 2019, 70(3): 857-864.
[12] Tao TIAN, Bing LIU, Meisheng SHI, Yaxiong AN, Jun MA, Yanjun ZHANG, Xinxi XU, Donghui ZHANG. Experiment and simulation of PSA process for small oxygen generator with two adsorption beds [J]. CIESC Journal, 2019, 70(3): 969-978.
[13] Chengzhen NI, Wenli DU, Guihua HU. Impact of turbulence model in coupled simulation of ethylene cracking furnace [J]. CIESC Journal, 2019, 70(2): 450-459.
[14] XIA Hongtao, ZOU Siyu, XIAO Jie. Numerical simulation of shear-thinning droplet impacting on randomly rough surfaces [J]. CIESC Journal, 2019, 70(2): 634-645.
[15] Pan XIONG, Shuguang YAN, Weiyin LIU. Structure optimization of cyclone based on response surface method [J]. CIESC Journal, 2019, 70(1): 154-160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LING Lixia, ZHANG Riguang, WANG Baojun, XIE Kechang. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] LEI Zhigang, LONG Aibin, JIA Meiru, LIU Xueyi. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] SU Haifeng, LIU Huaikun, WANG Fan, LÜXiaoyan, WEN Yanxuan. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] WANG Jianlin, XUE Yaoyu, YU Tao, ZHAO Liqiang. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] SUN Fubao, MAO Zhonggui, ZHANG Jianhua, ZHANG Hongjian, TANG Lei, ZHANG Chengming, ZHANG Jing, ZHAI Fangfang. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] Gao Ruichang, Song Baodong and Yuan Xiaojing( Chemical Engineering Research Center, Tianjin University, Tianjin 300072). LIQUID FLOW DISTRIBUTION IN GAS - LIQUID COUNTER - CONTACTING PACKED COLUMN[J]. , 1999, 50(1): 94 -100 .
[7] Su Yaxin, Luo Zhongyang and Cen Kefa( Institute of Thermal Power Engineering , Zhejiang University , Hangzhou 310027). A STUDY ON THE FINS OF HEAT EXCHANGERS FROM OPTIMIZATION OF ENTROPY GENERATION[J]. , 1999, 50(1): 118 -124 .
[8] Luo Xiaoping(Department of Industrial Equipment and Control Engineering , South China University of Technology, Guangzhou 510641)Deng Xianhe and Deng Songjiu( Research Institute of Chemical Engineering, South China University of Technology, Guangzhou 5106. RESEARCH ON FLOW RESISTANCE OF RING SUPPORT HEAT EXCHANGER WITH LONGITUDINAL FLUID FLOW ON SHELL SIDE[J]. , 1999, 50(1): 130 -135 .
[9] Jin Wenzheng , Gao Guangtu , Qu Yixin and Wang Wenchuan ( College of Chemical Engineering, Beijing Univercity of Chemical Technology, Beijing 100029). MONTE CARLO SIMULATION OF HENRY CONSTANT OF METHANE OR BENZENE IN INFINITE DILUTE AQUEOUS SOLUTIONS[J]. , 1999, 50(2): 174 -184 .
[10]

LI Qingzhao;ZHAO Changsui;CHEN Xiaoping;WU Weifang;LI Yingjie

.

Combustion of pulverized coal in O2/CO2 mixtures and its pore structure development

[J]. , 2008, 59(11): 2891 -2897 .