CIESC Journal ›› 2019, Vol. 70 ›› Issue (5): 1858-1867.doi: 10.11949/j.issn.0438-1157.20181245

• Process system engineering • Previous Articles     Next Articles

CFD simulation on hydrogenation of acetylene to ethylene in slurry bed

Wu SU(),Xiaogang SHI,Yingya WU,Jinsen GAO,Xingying LAN()   

  1. State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
  • Received:2018-10-22 Revised:2019-02-21 Online:2019-05-05 Published:2019-05-10
  • Contact: Xingying LAN E-mail:suwucup@163.com;lanxy@cup.edu.cn

Abstract:

The simulation of hydrogenation of acetylene in slurry reactor was carried out. The TFM-PBM coupling method was used to describe the flow of gas phase and slurry phase in slurry bed, and the kinetics of acetylene hydrogenation reaction was coupled to establish flow-reaction synthesis. The model was validated in a lab-scale slurry bed reactor and was then applied to the simulation of a bench-scale slurry bed reactor with respect to the function mechanisms of internals and the effects of operating conditions. Simulation results showed that vertical tube in the bench-scale reactor can break up bubbles and suppress the radial flow of gas phase, which benefits the uniform and sufficient conversion of acetylene. The conversion of acetylene is closely related to the residence time of gas phase and the reaction temperature. In order to obtain complete conversion of acetylene and high selectivity of ethylene when the slurry bed reactor was scaled-up to an industrial scale, it is critical to control the reaction temperature and the residence time of gas phase which can be regulated by changing the height of the liquid phase.

Key words: slurry bed, hydrogenation of acetylene, CFD, multiphase flow, multiphase reactor

CLC Number: 

  • TQ 021.1

Fig.1

Geometric structure of bench-scale slurry bed reactor"

Table 1

Equipment parameters and operating conditions"

项目 催化剂量/kg 催化剂浓度/%(vol) 气体流量/(m3/h) 入口H2:C2H2 (vol.) 压力/kPa 温度/℃
小试装置 0.002 2.4 0.09 4:01 101 150
中试装置 13 2 165, 300 4.45:1 450 123, 140

Table 2

Mesh independency"

项目 网格数/万 床层平均气含率 乙炔转化率/% 乙烯选择性/%

小试装置[border:border-top:solid;]

0.54 0.112 93.49 97.42
1.15 0.118 93.08 95.13
3.56 0.120 93.36 95.75

中试装置

4.5 0.211 97.84 91.42
24 0.203 99.43 85.88
34 0.207 99.65 89.60

Table 3

Comparisons between simulation results and experimental data in lab-scale equipment"

项目 床层整体气含率 C2H2转化率/% C2H4选择性/%
实验结果 0.125 100 95.51
模拟结果 0.118 93.08 95.13

Fig.2

Instantaneous iso-surface of gas hold-up (α g=0.15)"

Fig.3

C2H2 and C2H4 concentration at different heights"

Table 4

Comparisons between simulation results and experimental data in bench-scale equipment"

项目 工况1 工况2
实验结果 模拟结果 实验结果 模拟结果
温度/℃ 140 123
气体流量/(m3/h) 300 165
床层平均气含率 0.19 0.20 0.12
C2H2转化率/% 98.71 99.43 98.34 90.91
C2H4选择性/% 91.04 85.88 92.14 85.24

Fig.4

Instantaneous distribution of gas hold-up"

Fig.5

Instantaneous iso-surface of gas hold-up"

Fig.6

Radial distribution of time-averaged gas hold-up"

Fig.7

Radial distribution of time-averaged gas axial velocity"

Fig.8

Radial distribution of time-averaged liquid axial velocity"

Fig.9

Radial distribution of mean bubble size at different heights"

Fig.10

Axial distribution of C2H2 conversion"

Fig.11

Axial distribution of C2H4 mole fraction"

Fig.12

Axial distribution of C2H2 mole fraction under different condition"

Table 5

Conversion of C2H2 and selectivity of C2H4 at outlet"

项目 C2H2转化率/% C2H4选择性/%
工况1 99.43 85.88
工况3 99.99 69.49

Fig.13

Axial distribution of C2H2 and C2H4 mole fraction"

1 段东红, 刘世斌, 李一兵, 等 . 一种乙炔加氢制乙烯的浆态床工艺及其装置: 102489225A[P]. 2011-12-10.
Duan D H , Liu S B , Li Y B , et al . A slurry bed reactor for the selective hydrogenation of acetylene: 102489225A[P]. 2011-12-10.
2 陈艳君, 陈吉祥 . 乙炔选择加氢催化剂研究进展[J]. 化学工业与工程, 2017, 34(4): 18-26.
Chen Y J , Chen J X . Advances in catalysts for selective hydrogenation of acetylene[J]. Chemical Industry and Engineering, 2017, 34(4): 18-26.
3 张东平, 王功华 . 乙炔加氢反应器的模拟与分析[J]. 石油化工, 2003, 32(5): 414-417.
Zhang D P , Wang G H . Simulation and analysis of reactor for selective hydrogenation of acetylene[J]. Petrochemical Technology, 2003, 32(5): 414-417.
4 Borodzinski A , Cybulski A . The kinetic model of hydrogenation of acetylene–ethylene mixtures over palladium surface covered by carbonaceous deposits[J]. Applied Catalysis A: General, 2000, 198(1/2): 51-66.
5 Sarkany A . Formation of C4 oligomers in hydrogenation of acetylene over Pd/Al2O3 and Pd/TiO2 catalysts[J]. Reaction Kinetics and Catalysis Letters, 2001, 74(2): 299-307.
6 Edvinsson R K , Holmgren A M , Irandoust S . Liquid-phase hydrogenation of acetylene in a monolithic catalyst reactor[J]. Industrial & Engineering Chemistry Research, 1995, 34(1): 94-100.
7 Ruta M , Laurenczy G , Dyson P J , et al . Pd nanoparticles in a supported ionic liquid phase: highly stable catalysts for selective acetylene hydrogenation under continuous-flow conditions[J]. The Journal of Physical Chemistry C, 2008, 112(46): 17814-17819-.
8 Herrmann T , Rößmann L , Lucas M , et al . High-performance supported catalysts with an ionic liquid layer for the selective hydrogenation of acetylene[J]. Chemical Communications, 2011, 47(45): 12310-12312.
9 Shitova N B , Shlyapin D A , Afonasenko T N , et al . Liquid-phase hydrogenation of acetylene on the Pd/sibunit catalyst in the presence of carbon monoxide[J]. Kinetics and Catalysis, 2011, 52(2): 251-257.
10 余海鹏, 史雪君, 刘周恩, 等 . 用于乙炔选择性加氢制乙烯的浆态床反应器及反应系统: 104826558A[P]. 2015-08-05.
Yu H P , Shi X J , Liu Z E , et al . A slurry bed reactor and reaction system for the selective hydrogenation of acetylene: 104826558A[P]. 2015-08-05.
11 Hou R J , Wang T F , Lan X C . Enhanced selectivity in the hydrogenation of acetylene due to the addition of a liquid phase as a selective solvent[J]. Industrial & Engineering Chemistry Research, 2013, 52(37): 13305-13312.
12 Hou R J , Lan X C , Wang T F . Selective hydrogenation of acetylene on Pd/SiO2 in bulk liquid phase: a comparison with solid catalyst with ionic liquid layer (SCILL)[J]. Catalysis Today, 2015, 251: 47-52.
13 余牛杰 . 浆态床高浓度乙炔选择加氢合成乙烯的研究[D]. 太原: 太原理工大学, 2012.
Yu N J . Study on the performance of slurry reactor for ethylene synthesis by selective hydrogenation of acetylene[D]. Taiyuan: Taiyuan University of Technology, 2012.
14 Wang T F , Wang J F , Jin Y . Slurry reactors for gas-to-liquid processes: a review[J]. Industrial & Engineering Chemistry Research, 2007, 46(18): 5824-5847.
15 卢佳 . 浆态床费托合成反应器二维分布模型[D]. 杭州: 浙江大学, 2010.
Lu J . Two-dimensional model of the slurry bubble column reactor for Fischer-Tropsch synthesis[D]. Hangzhou: Zhejiang University, 2010.
16 Xu L J , Xia Z H , Guo X F , et al . Application of population balance model in the simulation of slurry bubble column[J]. Industrial & Engineering Chemistry Research, 2014, 53(12): 4922-4930.
17 Pan H , Chen X Z , Liang X F , et al . CFD simulations of gas-liquid-solid flow in fluidized bed reactors—a review[J]. Powder Technology, 2016, 299: 235-258.
18 Li H , Prakash A . Influence of slurry concentrations on bubble population and their rise velocities in a three-phase slurry bubble column[J]. Powder Technology, 2000, 113(1/2): 158-167.
19 Wang T F , Wang J F , Jin Y . Theoretical prediction of flow regime transition in bubble columns by the population balance model[J]. Chemical Engineering Science, 2005, 60(22): 6199-6209.
20 Ekambara K , Nandakumar K , Joshi J B . CFD simulation of bubble column reactor using population balance[J]. Industrial & Engineering Chemistry Research, 2008, 47(21): 8505-8516.
21 Wang T F , Wang J F , Jin Y . Population balance model for gas-liquid flows: influence of bubble coalescence and breakup models[J]. Industrial & Engineering Chemistry Research, 2005, 44(19): 7540-7549.
22 Guo X F , Zhou Q , Li J , et al . Implementation of an improved bubble breakup model for TFM-PBM simulations of gas–liquid flows in bubble columns[J]. Chemical Engineering Science, 2016, 152: 255-266.
23 Chen P , Sanyal J , Dudukovic M P . CFD modeling of bubble columns flows: implementation of population balance[J]. Chemical Engineering Science, 2004, 59(22/23): 5201-5207.
24 Laborde-Boutet C , Larachi F , Dromard N , et al . CFD simulation of bubble column flows: investigations on turbulence models in RANS approach[J]. Chemical Engineering Science, 2009, 64(21): 4399-4413.
25 Tomiyama A . Struggle with computational bubble dynamics[J]. Multiphase Science and Technology, 1998, 10(4): 369-405.
26 Bhole M R , Joshi J B , Ramkrishna D . CFD simulation of bubble columns incorporating population balance modeling[J]. Chemical Engineering Science, 2008, 63(8): 2267-2282.
27 Tomiyama A , Tamai H , Zun I , et al . Transverse migration of single bubbles in simple shear flows[J]. Chemical Engineering Science, 2002, 57(11): 1849-1858.
28 Fleischer C , Becker S , Eigenberger G . Detailed modeling of the chemisorption of CO2 into NaOH in a bubble column[J]. Chemical Engineering Science, 1996, 51(10): 1715-1724.
29 邢楚填 . 鼓泡床反应器实验研究及CFD-PBM耦合模型数值模拟[D]. 北京: 清华大学, 2014.
Xing C T . Experimental study and numerical simulation of bubble column with a CFD-PBM coupled model[D]. Beijing: Tsinghua University, 2014.
30 Luo H , Svendsen H F . Theoretical model for drop and bubble breakup in turbulent dispersions[J]. AIChE Journal, 1996, 42(5): 1225-1233.
31 Luo H . Coalescence, breakup and liquid circulation in bubble column reactors[D]. Trondheim: Norwegian University of Science and Technology, 1993.
32 王功华 . 乙炔加氢动力学研究及反应器模拟计算[D]. 北京: 北京化工大学, 2003.
Wang G H . Simulation and kinetic study of hydrogenation acetylene of acetylene [D]. Beijing: Beijing University of Chemical Technology, 2014.
33 Kumar S B , Moslemian D , Duduković M P . Gas‐holdup measurements in bubble columns using computed tomography[J]. AIChE Journal, 1997, 43(6): 1414-1425.
34 Chen P , Sanyal J , Duduković M P . Numerical simulation of bubble columns flows: effect of different breakup and coalescence closures[J]. Chemical Engineering Science, 2005, 60(4): 1085-1101.
35 Chen P , Duduković M P , Sanyal J . Three‐dimensional simulation of bubble column flows with bubble coalescence and breakup[J]. AIChE Journal, 2005, 51(3): 696-712.
[1] TONG Ying, AHMAD Nouman, LU Bona, WANG Wei. Numerical investigation of bubbling fluidized bed with binary particle mixture using EMMS mesoscale drag model [J]. CIESC Journal, 2019, 70(5): 1682-1692.
[2] Junjie LIN, Kun LUO, Shuai WANG, Chenshu HU, Jianren FAN. Verification of coarse-grained CFD-DEM method in multiple flow regimes [J]. CIESC Journal, 2019, 70(5): 1702-1712.
[3] Shunhao WANG, Wenli ZHU, Zhenggen HU, Rui ZHOU, Liu YU, Bin WANG, Xiaobin ZHANG. Numerical simulation and experimental validation of evaporation characteristics of scaled liquid hydrogen tank [J]. CIESC Journal, 2019, 70(3): 840-849.
[4] Xin ZHOU, Ledong DENG, Hong WANG, Xun ZHU, Rong CHEN, Qiang LIAO, Yudong DING. Effect of cooled cylindrical surface on droplet dynamic behavior [J]. CIESC Journal, 2019, 70(3): 883-891.
[5] Chengzhen NI, Wenli DU, Guihua HU. Impact of turbulence model in coupled simulation of ethylene cracking furnace [J]. CIESC Journal, 2019, 70(2): 450-459.
[6] Huahai ZHANG, Tiefeng WANG. Generality of CFD-PBM coupled model for simulations of gas-liquid bubble column [J]. CIESC Journal, 2019, 70(2): 487-495.
[7] Yingjie LIU, Jesse ZHU. Flow behaviors in bubble-driven liquid-solid fluidized-bed adopting binary particles [J]. CIESC Journal, 2019, 70(1): 91-98.
[8] Pan XIONG, Shuguang YAN, Weiyin LIU. Structure optimization of cyclone based on response surface method [J]. CIESC Journal, 2019, 70(1): 154-160.
[9] Wei CHEN, Ying REN. Similarity between fluidization and phase transition [J]. CIESC Journal, 2019, 70(1): 1-9.
[10] DU Dongxing, ZHENG Lichen, ZHANG Xu, SUN Guolong, LI Yingge, CHAO Kun. Comparative experimental studies on oil recovery characteristics of supercritical CO2 and foam fluid in porous media [J]. CIESC Journal, 2018, 69(S1): 58-63.
[11] YANG Shujun, WEI Yucong, WOO Meng Wai, WU Winston Duo, CHEN Xiao Dong, Xiao Jie. Numerical simulation of mono-disperse droplet spray dryer under influence of swirling flow [J]. CIESC Journal, 2018, 69(9): 3814-3824.
[12] ZHU Litao, LUO Zhenghong. Application of magnetic resonance imaging to multiphase fluid hydrodynamics [J]. CIESC Journal, 2018, 69(9): 3765-3773.
[13] CHEN Guoqi, SUN Jianjun, SUN Dianfeng, MA Chenbo. Performance analysis of double-end self-pumping mechanical seal for main coolant pump of sodium-cooled fast reactor [J]. CIESC Journal, 2018, 69(8): 3565-3576.
[14] HE Denghui, CHEN Senlin, BAI Bofeng. New model for measuring stratified gas-liquid flow by Chisholm-model-based V-cone flowmeter [J]. CIESC Journal, 2018, 69(8): 3428-3435.
[15] HU Rentao, REN Libo, WANG Dewu, LIU Yan, ZHANG Shaofeng. Numerical simulation of fully developed liquid-solid flow in vertical narrow channel [J]. CIESC Journal, 2018, 69(8): 3408-3417.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LING Lixia, ZHANG Riguang, WANG Baojun, XIE Kechang. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] LEI Zhigang, LONG Aibin, JIA Meiru, LIU Xueyi. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] SU Haifeng, LIU Huaikun, WANG Fan, LÜXiaoyan, WEN Yanxuan. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] WANG Jianlin, XUE Yaoyu, YU Tao, ZHAO Liqiang. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] SUN Fubao, MAO Zhonggui, ZHANG Jianhua, ZHANG Hongjian, TANG Lei, ZHANG Chengming, ZHANG Jing, ZHAI Fangfang. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] Gao Ruichang, Song Baodong and Yuan Xiaojing( Chemical Engineering Research Center, Tianjin University, Tianjin 300072). LIQUID FLOW DISTRIBUTION IN GAS - LIQUID COUNTER - CONTACTING PACKED COLUMN[J]. , 1999, 50(1): 94 -100 .
[7] Su Yaxin, Luo Zhongyang and Cen Kefa( Institute of Thermal Power Engineering , Zhejiang University , Hangzhou 310027). A STUDY ON THE FINS OF HEAT EXCHANGERS FROM OPTIMIZATION OF ENTROPY GENERATION[J]. , 1999, 50(1): 118 -124 .
[8] Luo Xiaoping(Department of Industrial Equipment and Control Engineering , South China University of Technology, Guangzhou 510641)Deng Xianhe and Deng Songjiu( Research Institute of Chemical Engineering, South China University of Technology, Guangzhou 5106. RESEARCH ON FLOW RESISTANCE OF RING SUPPORT HEAT EXCHANGER WITH LONGITUDINAL FLUID FLOW ON SHELL SIDE[J]. , 1999, 50(1): 130 -135 .
[9] Jin Wenzheng , Gao Guangtu , Qu Yixin and Wang Wenchuan ( College of Chemical Engineering, Beijing Univercity of Chemical Technology, Beijing 100029). MONTE CARLO SIMULATION OF HENRY CONSTANT OF METHANE OR BENZENE IN INFINITE DILUTE AQUEOUS SOLUTIONS[J]. , 1999, 50(2): 174 -184 .
[10]

LI Qingzhao;ZHAO Changsui;CHEN Xiaoping;WU Weifang;LI Yingjie

.

Combustion of pulverized coal in O2/CO2 mixtures and its pore structure development

[J]. , 2008, 59(11): 2891 -2897 .