CIESC Journal ›› 2019, Vol. 70 ›› Issue (2): 634-645.doi: 10.11949/j.issn.0438-1157.20181213

• Process system engineering • Previous Articles     Next Articles

Numerical simulation of shear-thinning droplet impacting on randomly rough surfaces

XIA Hongtao, ZOU Siyu, XIAO Jie   

  1. Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
  • Received:2018-10-16 Revised:2018-12-28 Online:2019-02-05 Published:2019-04-03

Abstract:

The computational fluid dynamics phase field method was used to simulate the deposition process of single shear thinning non-Newtonian fluid droplets on a random rough surface. The analysis revealed the influence of random rough surface morphology on the movement state and equilibrium state of droplets. It was shown that, even on a smooth surface,under the same operating conditions,a shear-thinning droplet can demonstrate quite different impact behavior as compared with a Newtonian droplet. The shear-thinning property offers a much larger spreading ratio,and shorter time to reach equilibrium. The initial spreading phase is followed by a recoiling to equilibrium phase for the shear-thinning droplet,while the Newtonian droplet has a second spreading phase after the recoiling phase. On randomly rough surfaces,the maximum spreading ratio increases with the increase of either root-mean-square roughness(Rr)or Wenzel roughness parameter(Wr). With the same value of Wr,increasing Rr can lead to the decrease of the final spreading ratio,and slight decreases of equilibrium contact area and contact angle. With the same value of Rr,increasing Wr offers a faster deposition to reach an equilibrium state,and a linearly increased contact area.

Key words: randomly rough surface, droplet deposition, non-Newtonian fluids, gas-liquid two-phase flow, numerical simulation, coatings

CLC Number: 

  • TQ02
[1] 宋云超, 宁智, 孙春华, 等. 液滴撞击湿润壁面运动形态及飞溅运动机制[J]. 力学学报, 2013, 6:833-842. Song Y C, Ning Z, Sun C H, et al. Droplet impact on wet wall and splash motion mechanism[J]. Chinese Journal of Mechanics, 2013, 6:833-842.
[2] Smith F R, Buntsma N C, Brutin D. Roughness influence on human blood drop spreading and splashing[J]. Langmuir, 2018, 34:1143-1150.
[3] Šikalo Š, Wilhelm H D, Roisman I V, et al. Dynamic contact angle of spreading droplets:experiments and simulations[J]. Physics of Fluids, 2005, 17(6):1-13.
[4] Li J, Xiao J, Huang Y L, et al. Integrated process and roduct analysis:a multiscale approach to paint spray[J]. AIChE J., 2007, 53:2841-2857.
[5] Xiao J, Li J, Lou H H, et al. ACS-based dynamic ptimization for curing of polymeric coatings[J]. AIChE J., 2006, 52:1410-1422.
[6] Peters C A, Nichols M E, Ellwood K R J. The evolution of surface texture in automative coatings[J]. Journal of Coatings Technology and Research, 2011, 8:469-480.
[7] 刘红, 解茂昭, 史俊瑞, 等. 单液滴碰撞多孔介质过程的数值研究[J]. 燃烧科学与技术, 2011, 17(4):287-294. Liu H, Xie M Z, Liu H S, et al. Numerical simulation of single droplet impact on a wall in porous media[J]. Science and Technology of Combustion, 2011, 17(4):287-294.
[8] Engel O G. Waterdrop collisions with solid surfaces[J]. Journal of Research of the National Bureau of Standards, 1955, 54(5):281-98.
[9] 毕菲菲, 郭亚丽, 沈胜强, 等. 液滴撞击固体表面铺展特性的实验研究[J]. 物理学报, 2012, 61(18):1-6. Bi F F, Guo Y L, Shen S Q, et al. Experimental study of spread characteristics of droplet impacting solid surface[J]. Acta Physica Sinica, 2012, 61(18):1-6.
[10] Dong H, Carr W W, Bucknall D G, et al. Temporally-resolved inkjet drop impaction on surfaces[J]. AIChE J., 2007, 53(10):2606-2617.
[11] 李大树, 仇性启, 郑志伟, 等. 液滴冲击不同浸润性壁面的数值分析[J]. 农业机械学报, 2015, 46(7):294-302. Li D S, Qiu X Q, Zheng Z W, et al. Numerical analysis of droplet impact on surfaces with different wettabilities[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(7):294-302.
[12] 梁超, 王宏, 朱恂, 等. 液滴撞击不同浸润性壁面动态过程的数值模拟[J]. 化工学报, 2013, 64(8):2745-2751. Liang C, Wang H, Zhu X, et al. Numerical simulation of droplet impact on surfaces with different wettabilities[J]. CIESC Journal, 2013, 64(8):2745-2751.
[13] Scheller B L, Bousfield D W. Newtonian drop impact with a solid surface[J]. AIChE J., 1995, 41(6):1357-1367.
[14] Fukai J, Shiiba Y, Yamamoto T, et al. Wetting effects on the spreading of a liquid droplet colliding with a flat surface:experiment and modeling[J]. Physics of Fluids, 1995, 7(2):236-247.
[15] Fukai J, Shiiba Y, Miyatake O. Theoretical study of droplet impingement on a solid surface below the leidenfrost temperature[J]. International Journal of Heat & Mass Transfer, 1997, 40(10):2490-2492.
[16] Gao X, Li R. Spread and recoiling of liquid droplets impacting solid surfaces[J]. AIChE J., 2014, 60(7):2683-2691.
[17] Li X, Mao L, Ma X. Dynamic behavior of water droplet impact on microtextured surfaces:the effect of geometrical parameters on anisotropic wetting and the maximum spreading diameter[J]. Langmuir, 2013, 29(4):1129-1138.
[18] 毛靖儒, 施红辉, 俞茂铮. 液滴撞击固体表面时的流体动力学特性试验研究[J]. 力学与实践, 1995, 17(3):52-54. Mao J R, Shi H H, Yu M Z. Experimental study on hydrodynamic characteristics of drops impacting solid surfaces[J]. Mechanics and Practice, 1995, 17(3):52-54.
[19] David R, Neumann W. Contact angle hysteresis on randomly rough surfaces:a computational study[J]. Langmuir, 2013, 29:4551-4558.
[20] Dupuis A, Yeomans J M. Modeling droplets on superhydrophobic surfaces:equilibrium states and transitions[J]. Langmuir, 2005, 21:2624-2629.
[21] Kusumaatmaja H, Yeomans J M. Modeling contact angle hysteresis on chemically patterned and superhydrophobic surfaces[J]. Langmuir, 2007, 23:6019-6032.
[22] Kusumaatmaja H, Vrancken R J, Bastiaansen C W M, et al. Anisotropic drop morphologies on corrugated surfaces[J]. Langmuir, 2008, 24:7299-7308.
[23] 胡雷, 郭加宏, 王小永. 格子Boltzmann方法模拟双液滴同时冲击固体表面液膜[J]. 水动力学研究与进展(A辑), 2011, 26(1):11-18. Hu L, Guo J H, Wang X Y. Lattice Boltzmann method for simulating simultaneous impact of two droplets on solid surface liquid membranes[J]. Hydrodynamic Research and Progress (A Series), 2011, 26(1):11-18.
[24] Kai R, Feuillebois F. Influence of surface roughness on liquid drop impact[J]. J. Colloid Interface Sci., 1998, 203(1):16-30.
[25] Xiao J, Pan F, Xia H T, et al. Computational study of single droplet deposition on randomly rough surfaces:surface morphological effect on droplet impact dynamics[J]. Industrial & Engineering Chemistry Research, 2018, 57(22):7664-7675.
[26] Nigen S. Experimental investigation of the impact of an (apparent) yield-stress material[J]. Atomization and Sprays, 2005, 15(1):103-118.
[27] German G, Bertola V. Impact of shear-thinning and yield-stress drops on solid substrates[J]. Journal of Physics:Condensed Matter, 2009, 21(37):375111(16).
[28] 贺征, 郜冶, 顾璇, 等. 液滴与壁面碰撞模型研[J]. 哈尔滨工程大学学报, 2009, 30(3):267-270. He Z, Gao Y, Gu X, et al. Study on droplet wall collision model[J]. Journal of Harbin Engineering University, 2009, 30(3):267-270.
[29] 闵琪, 段远源, 王晓东, 等. 非牛顿流体液滴铺展过程的格子Boltzmann模拟[J]. 热科学与技术, 2013, 4(12):1-7. Min Q, Duan Y Y, Wang X D, et al. Lattice Boltzmann simulation of the spreading of non-newtonian fluids[J]. Journal of Thermal Science and Technology, 2013, 4(12):1-7.
[30] Yue P T, Feng J J, Liu C, et al. A diffuse-interface method for simulating two-phase flows of complex fluids[J]. Journal of Fluid Mechanics, 2004, 515(515):293-317.
[31] Xiao J, Chaudhuri S. Design of anti-icing coatings using supercooled droplets as nano-to-microscale probes[J]. Langmuir, 2012, 28:4434-4446.
[32] Lou H H, Huang Y L. Integrated modeling and simulation for improved reactive drying of clearcoat[J]. Industrial & Engineering Chemistry Research, 2000, 39(2):500-507.
[33] Xu J, Koelling K W. Temperature dependence of rheological behavior of a metallic automotive waterborne basecoat[J]. Progress in Organic Coatings, 2005, 53(3):169-176.
[34] Kang H C, Jacobi A M. Equilibrium contact angles of liquid droplets on ideal rough solids[J]. Langmuir, 2011, 27:14910-14918.
[35] Yang F, Zheng Z, Xiao R, et al. Comparison of two fractal interpolation methods[J]. Phys. A, 2017, 469:563-571.
[36] Izquierdo S, Lopez C I, Valdes J R, et al. Multiscale characterization of computational rough surfaces and their wear using self-affine principal profiles[J]. Wear, 2012, 274/275:1-7.
[37] Khoufech A, Benali M, Saleh K. Influence of liquid formulation and impact conditions on the wetting of hydrophobic surfaces by aqueous polymeric solutions[J]. Chemical Engineering Research & Design, 2016, 110:233-244.
[1] Hua CHEN, Xiuli LIU, Yaxing YANG, Liqiong ZHONG, Lei WANG, Na GAO. Numerical simulation of foam metal copper/paraffin phase change thermal storage process [J]. CIESC Journal, 2019, 70(S1): 86-92.
[2] Li ZHANG, Gang YOU, Xiaofeng QIAO, Guangwen XU, Guozhen LIU, Yunyi LIU. Chaotic analysis of pressure fluctuation and identification of flow regime in chlor-alkali electrolyzer [J]. CIESC Journal, 2019, 70(S1): 35-44.
[3] Yaxiao TIAN, Naiyong WANG, Changxing LI, Wenjing DU. Experimental and numerical study of cooling characteristics of foam nickel plate [J]. CIESC Journal, 2019, 70(S1): 79-85.
[4] Nenglian FENG, Ruijin MA, Longke CHEN, Shikang DONG, Xiaofeng WANG, Xingyu ZHANG. Heat transfer characteristics of honeycomb liquid-cooled power battery module [J]. CIESC Journal, 2019, 70(5): 1713-1722.
[5] Yuting CHEN, Yanyan XU, Lei WANG, Shuang YE, Weiguang HUANG. Effect of evaporator heat transfer process on selection of mixture and operating condition in ORC system [J]. CIESC Journal, 2019, 70(5): 1723-1733.
[6] Shuang ZHANG, Lei ZHAO, Lin GAO, Hua LIU. Exploration on thermo-mechanical characteristics of energy piles with double-U pipes buried in parallel by means of numerical simulations [J]. CIESC Journal, 2019, 70(5): 1750-1760.
[7] Wenyu LI, Liangliang SUN, Yanping YUAN, Xiaoling CAO, Bo XIANG. Heat storage and release characteristics of solar phase change Kang and influence factors [J]. CIESC Journal, 2019, 70(5): 1761-1771.
[8] Jingxian WANG, Youlin ZHENG, Heng HU, Bei WEI, Qi LI, Dapeng HU. Experimental research on flow mechanism analysis in oscillating tube of double-opening wave refrigerator [J]. CIESC Journal, 2019, 70(4): 1302-1308.
[9] Xuan WU, Xiaorui LI, Jun MA, Mengzhu QIN, Yahui ZHOU, Haiguang LI. Behavior characteristics of bubble formation under various nozzle immersion modes [J]. CIESC Journal, 2019, 70(3): 901-912.
[10] Xin ZHOU, Ledong DENG, Hong WANG, Xun ZHU, Rong CHEN, Qiang LIAO, Yudong DING. Effect of cooled cylindrical surface on droplet dynamic behavior [J]. CIESC Journal, 2019, 70(3): 883-891.
[11] Chuangang CHEN, Xuexing DING, Junjie LU, Weizheng ZHANG, Jinlin CHEN. Effect of friction pair interface micro-texture sequence on gas sealing performance [J]. CIESC Journal, 2019, 70(3): 1016-1026.
[12] Tao TIAN, Bing LIU, Meisheng SHI, Yaxiong AN, Jun MA, Yanjun ZHANG, Xinxi XU, Donghui ZHANG. Experiment and simulation of PSA process for small oxygen generator with two adsorption beds [J]. CIESC Journal, 2019, 70(3): 969-978.
[13] Chengzhen NI, Wenli DU, Guihua HU. Impact of turbulence model in coupled simulation of ethylene cracking furnace [J]. CIESC Journal, 2019, 70(2): 450-459.
[14] Jingyan LI, Zhongliang LIU, Yu ZHOU, Yanxia LI. Study of thermal-hydrologic-mechanical numerical simulation model on CO2 plume geothermal system [J]. CIESC Journal, 2019, 70(1): 72-82.
[15] Pan XIONG, Shuguang YAN, Weiyin LIU. Structure optimization of cyclone based on response surface method [J]. CIESC Journal, 2019, 70(1): 154-160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LING Lixia, ZHANG Riguang, WANG Baojun, XIE Kechang. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] LEI Zhigang, LONG Aibin, JIA Meiru, LIU Xueyi. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] SU Haifeng, LIU Huaikun, WANG Fan, LÜXiaoyan, WEN Yanxuan. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] WANG Jianlin, XUE Yaoyu, YU Tao, ZHAO Liqiang. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] SUN Fubao, MAO Zhonggui, ZHANG Jianhua, ZHANG Hongjian, TANG Lei, ZHANG Chengming, ZHANG Jing, ZHAI Fangfang. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] Gao Ruichang, Song Baodong and Yuan Xiaojing( Chemical Engineering Research Center, Tianjin University, Tianjin 300072). LIQUID FLOW DISTRIBUTION IN GAS - LIQUID COUNTER - CONTACTING PACKED COLUMN[J]. , 1999, 50(1): 94 -100 .
[7] Su Yaxin, Luo Zhongyang and Cen Kefa( Institute of Thermal Power Engineering , Zhejiang University , Hangzhou 310027). A STUDY ON THE FINS OF HEAT EXCHANGERS FROM OPTIMIZATION OF ENTROPY GENERATION[J]. , 1999, 50(1): 118 -124 .
[8] Luo Xiaoping(Department of Industrial Equipment and Control Engineering , South China University of Technology, Guangzhou 510641)Deng Xianhe and Deng Songjiu( Research Institute of Chemical Engineering, South China University of Technology, Guangzhou 5106. RESEARCH ON FLOW RESISTANCE OF RING SUPPORT HEAT EXCHANGER WITH LONGITUDINAL FLUID FLOW ON SHELL SIDE[J]. , 1999, 50(1): 130 -135 .
[9] Jin Wenzheng , Gao Guangtu , Qu Yixin and Wang Wenchuan ( College of Chemical Engineering, Beijing Univercity of Chemical Technology, Beijing 100029). MONTE CARLO SIMULATION OF HENRY CONSTANT OF METHANE OR BENZENE IN INFINITE DILUTE AQUEOUS SOLUTIONS[J]. , 1999, 50(2): 174 -184 .
[10]

LI Qingzhao;ZHAO Changsui;CHEN Xiaoping;WU Weifang;LI Yingjie

.

Combustion of pulverized coal in O2/CO2 mixtures and its pore structure development

[J]. , 2008, 59(11): 2891 -2897 .