CIESC Journal ›› 2019, Vol. 70 ›› Issue (5): 1761-1771.doi: 10.11949/j.issn.0438-1157.20181199

• Fluid dynamics and transport phenomena • Previous Articles     Next Articles

Heat storage and release characteristics of solar phase change Kang and influence factors

Wenyu LI(),Liangliang SUN(),Yanping YUAN,Xiaoling CAO,Bo XIANG   

  1. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
  • Received:2018-10-15 Revised:2019-01-26 Online:2019-05-05 Published:2019-05-10
  • Contact: Liangliang SUN;


The system combining the solar water and phase change heat storage Kang is put forward. Instead of water tank, Kang plate and phase change material are used as heat storage devices to availably improve the heating efficiency in this system. Based on Fluent, two-dimensional unsteady heat transfer model of the Kang is established. The heat storage and release characteristics of phase change Kang is studied and compared with the thermal properties of concrete material Kang. The effects of phase change temperature and latent heat of phase change materials on the heat storage and release characteristic of Kang are also analyzed. Under the working condition of this article, the stable temperatures of the upper surface of Kang of day and night increase by 2℃ and 4℃, respectively. The largest surface temperature difference of Kang decreases from 3.7℃ to 0.8℃. The heat increased by 66.36%. The phase change heat storage Kang has the advantages of high temperature of the upper surface of Kang, uniform temperature distribution, good heat-insulation property and large heat storage capacity. Results show that the temperature of the upper surface of Kang at night increase significantly, with the increase of phase change temperature, but the heat gain of Kang is reduced. Increasing the latent heat has little effect on the temperature of the upper surface of Kang, while significant effect on the heat gain of the Kang.

Key words: solar energy, phase change heat storage Kang, phase change temperature, phase change latent heat, numerical simulation

CLC Number: 

  • TK 512


Composite system of phase change heat storage Kang"


Schematic of cross section of Kang"

Table 1

Physical properties and geometric properties of Kang material"










水泥砂浆 30 1800 1050 0.93
卵石混凝土 60 2300 920 1.51
聚苯乙烯 20 30 1380 0.042
钢筋混凝土 100 2500 920 1.74

Table 2

Physical properties of phase change material"









890 2090 0.149 0.00507 0.000984


Basic heat transfer unit of Kang"


Validation of mesh and time steps independency"


Temperature of measured points of wall under different filling conditions"

Table 3

Physical properties of material"








十六醇-癸酸 861.57 0.155 2490
粉煤灰 2600 0.2 920
混凝土 2165 1.1 380

Table 4

Error analysis of numerical simulation"

测点 误差范围/% 平均误差/%
相变墙A点 0.08~3.11 0.91
混凝土墙A点 0.48~4.96 2.63
相变墙B点 0.31~5.04 2.11
混凝土墙B点 2.8~5.18 4.17


Change of average temperature of upper surface of Kang under different filling conditions"


Change of measuring points temperature of upper surface of Kang under different filling conditions"


Change of average temperature of under surface of Kang under different filling conditions"


Heat flux of pipe and liquid fraction varies with time"


Melting image of phase change materials"


Effect of phase change temperature and liquid fraction on average temperature of upper surface of Kang"


Total heat gain, heat release of day and night under different phase change temperatures"


Effect of phase change latent heat on average temperature of upper surface of Kang"


Total heat gain, heat release of day and night under different phase change latent heat"

1 清华大学建筑节能研究中心 . 中国建筑节能年度发展研究报告(2008)[M]. 北京: 中国建筑工业出版社, 2008: 173.
Building Energy Conservation Research Center, University Tsinghua . 2008 Annual Report on China Building Energy Efficiency[M]. Beijing: China Architecture & Building Press, 2008: 173.
2 Zhuang Z , Li Y G , Chen B , et al . Chinese Kang as a domestic heating system in rural northern China—a review[J]. Energy and Buildings, 2009, 41(1): 111-119.
3 Qian H , Li Y G , Zhang X S , et al . Surface temperature distribution of Chinese Kangs[J]. International Journal of Green Energy, 2010, 7(3): 347-360.
4 高翔翔, 胡冗冗, 刘加平, 等 . 北方炕民居冬季室内热环境研究[J]. 建筑科学, 2010, 26(2): 37-40.
Gao X X , Hu R R , Liu J P , et al . Research on winter indoor thermal environment of courtyard house with Chinese Kang in north China[J]. Build Science, 2010, 26(2): 37-40.
5 刘满, 夏晓东 . 辽宁省农村住宅的采暖方式与能耗研究[J]. 建筑节能, 2007, 35(7): 56-59.
Liu M , Xia X D . Research on heating methods and energy consumption of rural houses in Liaoning province[J]. Energy Consumption, 2007, 35(7): 56-59.
6 张寅平, 胡汉平, 孔祥冬, 等 . 相变贮能——理论和应用[M]. 合肥: 中国科学技术大学出版社, 1996: 1-5.
Zhang Y P , Hu H P , Kong X D , et al . Latent Heat Storage—Theory and Application[M]. Hefei: University of Science and Technology of China Press, 1996: 1-5.
7 袁艳平, 向波, 曹晓玲, 等 . 建筑相变储能技术研究现状与发展[J]. 西南交通大学学报, 2016, 51(3): 585-598.
Yuan Y P , Xiang B , Cao X L , et al . Research status and development on latent energy storage technology of building[J]. Journal of Southwest Jiaotong University, 2016, 51(3): 585-598.
8 Yang M , Yang X D , Wang P S , et al . A new Chinese solar Kang and its dynamic heat transfer model[J]. Energy and Buildings, 2013, 62(3): 539-549.
9 Yang M , Yang X D , Wang Z F , et al . Thermal analysis of a new solar Kang system[J]. Energy and Buildings, 2014, 75(2): 531-537.
10 王崇杰, 管振忠, 张蓓, 等 . 传统火炕的生态技术改造——太阳炕系统[C]//中国建筑学会技术分会, 东南大学建筑分会. 绿色建筑与建筑技术. 北京: 中国建筑工业出版社, 2006: 566-569.
Wang C J , Guan Z Z , Zhang B , et al . Ecological and technological reform of traditional fire Kang—solar Kang system[C]// Technical Branch of China Architectural Society, Architectural Branch of Southeast University. Green Building and Building Technology. Beijing: China Architecture & Building Press, 2006: 566-569.
11 冯国会, 王茜, 李刚, 等 . 太阳能炕采暖系统的试验研究[J]. 可再生能源, 2013, 31(3): 11-13.
Feng G H , Wang Q , Li G , et al . Experimental study on solar Kang heating system[J]. Renewable Energy Resources, 2013, 31(3): 11-13.
12 李刚, 李小龙, 李世鹏, 等 . 太阳能辅助火炕供暖系统热工性能[J]. 沈阳建筑大学学报(自然科学版), 2014, 30(2): 305-311.
Li G , Li X L , Li S P , et al . Experimental study on solar added Kang heating system[J]. Journal of Shenyang Jianzhu University (Natural Science), 2014, 30(2): 305-311.
13 张玲 . 寒冷地区农居太阳能炕采暖系统设计研究[D]. 济南: 山东建筑大学, 2010.
Zhang L . Design research of solar Kang heating system used in rural residences in cold area[D]. Jinan: Shangdong Jianzhu University, 2010.
14 He W , Jiang Q Y , Ji J , et al . A study on thermal performance, thermal comfort in sleeping environment and solar energy contribution of solar Chinese Kang[J]. Energy and Buildings, 2013, 58(2): 66-75.
15 江清阳 . 与新型百叶集热墙结合的复合太阳能炕系统实验和理论研究[D]. 合肥: 中国科学技术大学, 2012.
Jiang Q Y . Experimental and numerical study on solar Chinese Kang system combined with novel collector-trombe wall[D]. Hefei: University of Science and Technology of China, 2012.
16 李刚, 池兰, 冯国会, 等 . 相变蓄能火炕热舒适性的试验[J]. 农业工程学报, 2016, 32(11): 244-249.
Li G , Chi L , Feng G H , et al . Experiment on thermal comfort performance of phase-change energy storage Kang[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(11): 244-249.
17 徐洪波, 焦庆余, 徐国堂 . 高效预制组装架空火炕的研究[J]. 农业工程学报, 1991, 27(3): 81-86.
Xu H B , Jiao Q Y , Xu G T . The research of the high efficiency prefabricated and combined-suspend heatable brick bed[J]. Transactions of the Chinese Society of Agricultural Engineering, 1991, 27(3): 81-86.
18 冯革宇, 刘博智 . 用数值模拟方法优化设计吊炕研究[J]. 建筑热能通风空调, 2009, 28(5): 53-57.
Feng G Y , Liu B Z . Optimization design of suspended Kang based on numerical simulation[J]. Building Energy & Environment, 2009, 28(5): 53-57.
19 牛叔文, 钱玉杰, 胡莉莉, 等 . 甘肃庄浪县农户吊炕的热效率模拟分析[J]. 农业工程学报, 2013, 29(6): 193-201.
Niu S W , Qian Y J , Hu L L , et al . Model analysis on thermal efficiency of suspended Kang of rural households in Zhuanglang county, Gansu province[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(6): 193-201.
20 Macfarlane W V . Thermal comfort zones[J]. Architectural Science Review, 1958, 1(1): 1-14.
21 Chrenko R A . Indoor climate: effects on human comfort, performance and health: P. O. Fanger and O. Valbjorn, eds, Danish Building Research Institute, Copenhagen (1979) 895 pp[J]. International Journal of Refrigeration, 1980, 3(3): 173-174.
22 Choi J W . Bed climate of Korean using ondol heating system[J]. Journal of Thermal Biology, 1993, 18(5): 399-403.
23 李净, 刘艳峰, 宋聪, 等 . 西北民居冬季睡眠被褥微气候研究[J]. 建筑科学, 2016, 32(2): 65-69.
Li J , Liu Y F , Song C , et al . Winter bedding microclimate in rural houses in northwest China[J]. Building Science, 2016, 32(2): 65-69.
24 中华人民共和国住房和城乡建设部 . 农村火炕系统通用技术规程: JGJ/T 358—2015[S]. 北京: 中国建筑工业出版社, 2015.
Ministry of Housing and Urban-Rural Development of the People's Republic of China . Technical specification for rural Kang system: JGJ/T 358—2015[S]. Beijing: China Architecture & Building Press, 2015.
25 张群力, 高岩, 狄洪发 . 低温热水型相变蓄能地板采暖房间动态热性能研究[J]. 太阳能学报, 2015, 36(4): 943-949.
Zhang Q L , Gao Y , Di H F . Research on the dynamic performance of room with low temperature hot water floor heating system thermal energy storage[J]. Acta Energiae Solaris Sinica, 2015, 36(4): 943-949.
26 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量检验检疫总局 . 农村居住建筑节能设计标准: GB/T 50824—2013[S]. 北京: 中国建筑工业出版社, 2013.
Ministry of Housing and Urban-Rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China . Design standard for energy efficiency of rural residential buildings: GB/T 50824—2013[S]. Beijing: China Architecture & Building Press, 2013.
27 陆耀庆 . 实用供热空调设计手册[M]. 2版.北京: 中国建筑工业出版社, 2008: 496.
Lu Y Q . Design Manual of Practical Heating and Air Conditioning[M]. 2nd ed. Beijing: China Architecture & Building Press, 2008: 496.
28 刘艳峰 . 地板供暖设计与运行基础理论研究[D]. 西安: 西安建筑科技大学, 2004.
Liu Y F . Study on basic theory of designing and running control of imbed pipe heating[D]. Xi’an: Xi’an University of Architecture and Technology, 2004.
29 Wang S K . Handbook of Air Conditioning and Refrigeration[M]. 2nd ed. The United States of America: McGraw-Hill Companies, 2000: 68-72.
30 杨颖, 张盼 . 建筑用新型复合相变材料储能过程的热性能研究[J]. 化工新型材料, 2015, 43(1): 120-122.
Yang Y , Zhang P . Thermal performance study on energy storage of new composite phase materials used in building envelope[J]. New Chemical Materials, 2015, 43(1): 120-122.
[1] Hua CHEN, Xiuli LIU, Yaxing YANG, Liqiong ZHONG, Lei WANG, Na GAO. Numerical simulation of foam metal copper/paraffin phase change thermal storage process [J]. CIESC Journal, 2019, 70(S1): 86-92.
[2] Yaxiao TIAN, Naiyong WANG, Changxing LI, Wenjing DU. Experimental and numerical study of cooling characteristics of foam nickel plate [J]. CIESC Journal, 2019, 70(S1): 79-85.
[3] Nenglian FENG, Ruijin MA, Longke CHEN, Shikang DONG, Xiaofeng WANG, Xingyu ZHANG. Heat transfer characteristics of honeycomb liquid-cooled power battery module [J]. CIESC Journal, 2019, 70(5): 1713-1722.
[4] Yuting CHEN, Yanyan XU, Lei WANG, Shuang YE, Weiguang HUANG. Effect of evaporator heat transfer process on selection of mixture and operating condition in ORC system [J]. CIESC Journal, 2019, 70(5): 1723-1733.
[5] Shuang ZHANG, Lei ZHAO, Lin GAO, Hua LIU. Exploration on thermo-mechanical characteristics of energy piles with double-U pipes buried in parallel by means of numerical simulations [J]. CIESC Journal, 2019, 70(5): 1750-1760.
[6] Jingxian WANG, Youlin ZHENG, Heng HU, Bei WEI, Qi LI, Dapeng HU. Experimental research on flow mechanism analysis in oscillating tube of double-opening wave refrigerator [J]. CIESC Journal, 2019, 70(4): 1302-1308.
[7] Pan WEI, Jiabang YU, Zengxu GUO, Xiaohu YANG, Yaling HE. Experimental visualization on thermal energy storage enhancement through metal foam filled annuli [J]. CIESC Journal, 2019, 70(3): 850-856.
[8] Tao TIAN, Bing LIU, Meisheng SHI, Yaxiong AN, Jun MA, Yanjun ZHANG, Xinxi XU, Donghui ZHANG. Experiment and simulation of PSA process for small oxygen generator with two adsorption beds [J]. CIESC Journal, 2019, 70(3): 969-978.
[9] Xin YAN, Jinliang XU. Character of sessile gold-water nanofluid droplet evaporation with solar heating on superhydrophobic surface [J]. CIESC Journal, 2019, 70(3): 892-900.
[10] Xuan WU, Xiaorui LI, Jun MA, Mengzhu QIN, Yahui ZHOU, Haiguang LI. Behavior characteristics of bubble formation under various nozzle immersion modes [J]. CIESC Journal, 2019, 70(3): 901-912.
[11] Xin ZHOU, Ledong DENG, Hong WANG, Xun ZHU, Rong CHEN, Qiang LIAO, Yudong DING. Effect of cooled cylindrical surface on droplet dynamic behavior [J]. CIESC Journal, 2019, 70(3): 883-891.
[12] Chuangang CHEN, Xuexing DING, Junjie LU, Weizheng ZHANG, Jinlin CHEN. Effect of friction pair interface micro-texture sequence on gas sealing performance [J]. CIESC Journal, 2019, 70(3): 1016-1026.
[13] Chengzhen NI, Wenli DU, Guihua HU. Impact of turbulence model in coupled simulation of ethylene cracking furnace [J]. CIESC Journal, 2019, 70(2): 450-459.
[14] XIA Hongtao, ZOU Siyu, XIAO Jie. Numerical simulation of shear-thinning droplet impacting on randomly rough surfaces [J]. CIESC Journal, 2019, 70(2): 634-645.
[15] Jingyan LI, Zhongliang LIU, Yu ZHOU, Yanxia LI. Study of thermal-hydrologic-mechanical numerical simulation model on CO2 plume geothermal system [J]. CIESC Journal, 2019, 70(1): 72-82.
Full text



[1] LING Lixia, ZHANG Riguang, WANG Baojun, XIE Kechang. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] LEI Zhigang, LONG Aibin, JIA Meiru, LIU Xueyi. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] SU Haifeng, LIU Huaikun, WANG Fan, LÜXiaoyan, WEN Yanxuan. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] WANG Jianlin, XUE Yaoyu, YU Tao, ZHAO Liqiang. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] SUN Fubao, MAO Zhonggui, ZHANG Jianhua, ZHANG Hongjian, TANG Lei, ZHANG Chengming, ZHANG Jing, ZHAI Fangfang. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] Gao Ruichang, Song Baodong and Yuan Xiaojing( Chemical Engineering Research Center, Tianjin University, Tianjin 300072). LIQUID FLOW DISTRIBUTION IN GAS - LIQUID COUNTER - CONTACTING PACKED COLUMN[J]. , 1999, 50(1): 94 -100 .
[7] Su Yaxin, Luo Zhongyang and Cen Kefa( Institute of Thermal Power Engineering , Zhejiang University , Hangzhou 310027). A STUDY ON THE FINS OF HEAT EXCHANGERS FROM OPTIMIZATION OF ENTROPY GENERATION[J]. , 1999, 50(1): 118 -124 .
[8] Luo Xiaoping(Department of Industrial Equipment and Control Engineering , South China University of Technology, Guangzhou 510641)Deng Xianhe and Deng Songjiu( Research Institute of Chemical Engineering, South China University of Technology, Guangzhou 5106. RESEARCH ON FLOW RESISTANCE OF RING SUPPORT HEAT EXCHANGER WITH LONGITUDINAL FLUID FLOW ON SHELL SIDE[J]. , 1999, 50(1): 130 -135 .
[9] Jin Wenzheng , Gao Guangtu , Qu Yixin and Wang Wenchuan ( College of Chemical Engineering, Beijing Univercity of Chemical Technology, Beijing 100029). MONTE CARLO SIMULATION OF HENRY CONSTANT OF METHANE OR BENZENE IN INFINITE DILUTE AQUEOUS SOLUTIONS[J]. , 1999, 50(2): 174 -184 .

LI Qingzhao;ZHAO Changsui;CHEN Xiaoping;WU Weifang;LI Yingjie


Combustion of pulverized coal in O2/CO2 mixtures and its pore structure development

[J]. , 2008, 59(11): 2891 -2897 .