CIESC Journal ›› 2019, Vol. 70 ›› Issue (3): 883-891.doi: 10.11949/j.issn.0438-1157.20181168

• Fluid dynamics and transport phenomena • Previous Articles     Next Articles

Effect of cooled cylindrical surface on droplet dynamic behavior

Xin ZHOU1(),Ledong DENG1,Hong WANG1,2(),Xun ZHU1,2,Rong CHEN1,2,Qiang LIAO1,2,Yudong DING1,2   

  1. 1. Institute of Engineering Thermophysics, Chongqing 400030, China
    2. Key Laboratory of Low-Grade Energy Utilization Technologies & Systems, MOE, Chongqing University, Chongqing 400030, China
  • Received:2018-10-09 Revised:2018-12-19 Online:2019-03-05 Published:2018-12-19
  • Contact: Hong WANG E-mail:1525435144@qq.com;hongwang@cqu.edu.cn

Abstract:

The prevention and control of ice accumulation has important applications in aviation, building construction and power grid construction. A deep physical insight of the ice forming on the cylindrical surface would give an instruction to the ice-removal strategies for energy conversion devices. Simulations were performed using CLSVOF (coupled level-set and volume of fluid) to track the air-water interface and an enthalpy-porosity method to capture the phase transition. The effects of learning behavior and phase transition characteristics are mainly concerned with the variation of two important parameters: the change of liquid film height and the wetting characteristics of droplets on the wall. The results showed that improve the wall hydrophobicity performance, which could effectively reduce the spreading wetted area of the droplet impact cylinder, thereby reducing the frozen area and decreasing the damage degree of icing. Due to the curvature of the cylinder, the liquid film breaks when the droplet hits the hydrophobic cylindrical wall. However, at extremely low temperature, it can inhibit the splitting of the liquid film on the circular wall surface, resulting in an increase in the spreading area of the liquid film on the wall surface, and the icing phenomenon becomes more serious.

Key words: droplet impact, multiphase flow, phase change, numerical simulation, cylindrical surface

CLC Number: 

  • TQ 028.8

Fig.1

Computational solution domain and mesh independence test"

Fig.2

Impacting morphological comparisons between experimental images [30] and simulation results after water droplet impacting on cold flat substrate"

Fig.3

Schematic diagram of measurements"

Fig.4

Phase transition and vector distribution during a water droplet impacting on cold circular substrate"

Fig.5

Evolution of a single droplet impact on different wettability cold smooth cylinders"

Fig.6

Change of α and δ after a single droplet impacting on different wettability cold smooth cylinders"

Fig.7

Evolution of a single droplet impacting on different temperature smooth cylinders"

Fig.8

Change of α and δ after a single droplet impacting on different temperature smooth cylinders"

Fig. 9

Change of α and δ after a single droplet impacting on smooth cylinders at different velocities"

1 金传芳, 郑国璋, 韩军青. 2008年初我国南方低温雨雪冰冻灾害分析[J]. 山西师范大学学报(自然科学版), 2009, 23(2): 94-98.
JinC F, ZhengG Z, HanJ Q, et al. Analysis of the freezing disasters of low temperature rain and snow in southern China in early 2008[J]. Journal of Shanxi Normal University (Natural Science Edition), 2009, 23(2): 94-98.
2 胡琴, 于洪杰, 徐勋建, 等. 分裂导线覆冰扭转特性分析及等值覆冰厚度计算[J]. 电网技术, 2016, 40(11): 3615-3620.
HuQ, YuH J, XuX J, et al. Study on torsion characteristic and equivalent ice thickness of bundle conductors[J]. Power System Technology, 2016, 40(11): 3615-3620.
3 殷水清, 赵珊珊, 王遵娅, 等. 全国电线结冰厚度分布及等级预报模型[J]. 应用气象学报, 2009, 20(6): 722-728.
YinS Q, ZhaoS S, WangJ Y, et al. National wire icing thickness distribution and grade prediction model[J]. Journal of Applied Meteorological Science, 2009, 20(6): 722-728.
4 范瑶, 王宏, 朱恂, 等. 壁面曲率及过冷度对液滴铺展特性的影响[J]. 化工学报, 2016, 67(7): 2709-2717.
FanY, WangH, ZhuX, et al. Effect of curvature and undercooling degree of surface on behavior of droplet spreading [J]. CIESC Journal, 2016, 67(7): 2709-2717.
5 WorthingtonA M . A second paper on the forms assumed by drops of liquids falling vertically on a horizontal plate [J]. Proceedings of the Royal Society of London, 1876, 25(171-178): 261-272.
6 MaoT, KuhnD C S, TranH. Spread and rebound of liquid droplets upon impact on flat surfaces[J]. AIChE Journal, 1997, 43(9): 2169-2179.
7 HeungsupP, CarrW W, ZhuJ, et al. Single drop impaction on a solid surface[J]. AIChE Journal, 2010, 49(10): 2461-2471.
8 RiobooR, MarengoM, TropeaC. Time evolution of liquid drop impact onto solid, dry surfaces[J]. Experiments in Fluids, 2002, 33(1): 112-124.
9 HungL S, YaoS C. Experimental investigation of the impaction of water droplets on cylindrical objects[J]. International Journal of Multiphase Flow, 1999, 25(8): 1545-1559.
10 LiangG T. Special phenomena of droplet impact on an inclined wetted surface with experimental observation[J]. Acta Physica Sinica, 2013, 62(8): 084707.
11 梁超, 王宏, 朱恂, 等. 液滴撞击不同浸润性壁面动态过程的数值模拟[J]. 化工学报, 2013, 64(8): 2745-2751.
LiangC, WangH, ZhuX, et al. Numerical simulation of droplet impact on surfaces with different wettability[J]. CIESC Journal, 2013, 64(8): 2745-2751.
12 杨宝海, 王宏, 朱恂, 等. 速度对液滴撞击超疏水壁面行为特性的影响[J]. 化工学报, 2012, 63(10): 3027-3033.
YangB H, WangH, ZhuX, et al. Effect of velocity on behavior of droplet impacting on superhydrophobic surface[J]. CIESC Journal, 2012, 63(10): 3027-3033.
13 LiangG, GuoY, YangY, et al. Liquid sheet behaviors during a drop impact on wetted cylindrical surfaces[J]. International Communications in Heat and Mass Transfer, 2014, 54(5): 67-74.
14 FlemingsM C. Solidification Processing[M]. New York: McGraw-Hill, 1974.
15 SchiaffinoS, SoninA A. Molten droplet deposition and solidification at low Weber numbers[J]. Physics of Fluids, 1998, 9(11): 3172-3187.
16 JungS, TiwariM K, DoanN V, et al. Mechanism of supercooled droplet freezing on surfaces[J]. Nature Communications, 2012, 3: 615.
17 AlaviS, Passandideh-FardM, MostaghimiJ. Simulation of semi-molten particle impacts including heat transfer and phase change[J]. Journal of Thermal Spray Technology, 2012, 21(6): 1278-1293.
18 YaoY, LiC, ZhangH, et al. Modelling the impact, spreading and freezing of a water droplet on horizontal and inclined superhydrophobic cooled surfaces[J]. Applied Surface Science, 2017, 419: 52-62.
19 冷梦尧, 常士楠, 丁亮. 不同浸润性冷表面上水滴碰撞结冰的数值模拟[J]. 化工学报, 2016, 67(7): 2784-2792.
LengM Y, ChangS N, DingL, et al. Numerical simulation of droplet impinging and freezing on cold surfaces with different wettability[J]. CIESC Journal, 2016, 67(7): 2784-2792.
20 LiangG, YangY, GuoY, et al. Rebound and spreading during a drop impact on wetted cylinders[J]. Experimental Thermal and Fluid Science, 2014, 52(52): 97-103.
21 LiuY, AndrewM, JingL, et al. Symmetry breaking in drop bouncing on curved surfaces[J]. Nature Communications, 2015, 6: 10034.
22 AndrewM, LiuY, YeomansJ. Variation of the contact time of droplets bouncing on cylindrical ridges with ridge size[J]. Langmuir, 2017, 33(30): 7583-7587.
23 LiH, RoismanI V, TropeaC. Influence of solidification on the impact of supercooled water drops onto cold surfaces[J]. Experiments in Fluids, 2015, 56(6): 133.
24 YaoY, LiC, TaoZ, et al. Experimental and numerical study on the impact and freezing process of a water droplet on a cold surface[J]. Applied Thermal Engineering, 2018, 137: 83-92.
25 YangG, GuoK, LiN. Experimental study on the freezing mechanism of super-cooled water droplets impacting on a wire[J]. Journal of Refrigeration, 2011, 32(5): 37-41.
26 杨国敏, 郭开华, 李宁. 过冷水滴碰撞导线表面结冰机理的实验研究[J]. 制冷学报, 2011, 32(5): 37-41.
YangG M, GuoK H, LiN, et al. Experimental study on the freezing mechanism of super-cooled water droplets impacting on a wire[J]. Journal of Refrigeration, 2011, 32(5): 37-41.
27 SussmanM, PuckettE G. A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows[J]. Journal of Computational Physics, 2000, 162(2): 301-337.
28 VollerV R, PrakashC. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems[J]. International Journal of Heat and Mass Transfer, 1987, 30(8): 1709-1719.
29 LiangG , ShenS , MuX . Numerical analysis and insight of drop impacting dynamics upon a liquid film[J]. Acta Mechanica, 2017, 228(2): 385-400.
30 DingB, WangH, ZhuX, et al. How supercooled superhydrophobic surfaces affect dynamic behaviors of impacting water droplets[J]. International Journal of Heat and Mass Transfer, 2018, 124: 1025-1032.
[1] Hua CHEN, Xiuli LIU, Yaxing YANG, Liqiong ZHONG, Lei WANG, Na GAO. Numerical simulation of foam metal copper/paraffin phase change thermal storage process [J]. CIESC Journal, 2019, 70(S1): 86-92.
[2] Yaxiao TIAN, Naiyong WANG, Changxing LI, Wenjing DU. Experimental and numerical study of cooling characteristics of foam nickel plate [J]. CIESC Journal, 2019, 70(S1): 79-85.
[3] Nenglian FENG, Ruijin MA, Longke CHEN, Shikang DONG, Xiaofeng WANG, Xingyu ZHANG. Heat transfer characteristics of honeycomb liquid-cooled power battery module [J]. CIESC Journal, 2019, 70(5): 1713-1722.
[4] Yuting CHEN, Yanyan XU, Lei WANG, Shuang YE, Weiguang HUANG. Effect of evaporator heat transfer process on selection of mixture and operating condition in ORC system [J]. CIESC Journal, 2019, 70(5): 1723-1733.
[5] Shuang ZHANG, Lei ZHAO, Lin GAO, Hua LIU. Exploration on thermo-mechanical characteristics of energy piles with double-U pipes buried in parallel by means of numerical simulations [J]. CIESC Journal, 2019, 70(5): 1750-1760.
[6] Wenyu LI, Liangliang SUN, Yanping YUAN, Xiaoling CAO, Bo XIANG. Heat storage and release characteristics of solar phase change Kang and influence factors [J]. CIESC Journal, 2019, 70(5): 1761-1771.
[7] Wu SU, Xiaogang SHI, Yingya WU, Jinsen GAO, Xingying LAN. CFD simulation on hydrogenation of acetylene to ethylene in slurry bed [J]. CIESC Journal, 2019, 70(5): 1858-1867.
[8] Linchen ZHOU, Zhigao SUN, Ling LU, Sai WANG, Juan LI, Cuimin LI. Formation and stability of HCFC–141b hydrate in organic phase change emulsion [J]. CIESC Journal, 2019, 70(5): 1674-1681.
[9] Jingxian WANG, Youlin ZHENG, Heng HU, Bei WEI, Qi LI, Dapeng HU. Experimental research on flow mechanism analysis in oscillating tube of double-opening wave refrigerator [J]. CIESC Journal, 2019, 70(4): 1302-1308.
[10] Xuan WU, Xiaorui LI, Jun MA, Mengzhu QIN, Yahui ZHOU, Haiguang LI. Behavior characteristics of bubble formation under various nozzle immersion modes [J]. CIESC Journal, 2019, 70(3): 901-912.
[11] Chuangang CHEN, Xuexing DING, Junjie LU, Weizheng ZHANG, Jinlin CHEN. Effect of friction pair interface micro-texture sequence on gas sealing performance [J]. CIESC Journal, 2019, 70(3): 1016-1026.
[12] Shunhao WANG, Wenli ZHU, Zhenggen HU, Rui ZHOU, Liu YU, Bin WANG, Xiaobin ZHANG. Numerical simulation and experimental validation of evaporation characteristics of scaled liquid hydrogen tank [J]. CIESC Journal, 2019, 70(3): 840-849.
[13] Yaowu WANG, Jianping PENG, Yuezhong DI, Pengcheng HAO. Mechanism of deterioration for dry barrier material in aluminum electrolysis cells [J]. CIESC Journal, 2019, 70(3): 1035-1041.
[14] Pan WEI, Jiabang YU, Zengxu GUO, Xiaohu YANG, Yaling HE. Experimental visualization on thermal energy storage enhancement through metal foam filled annuli [J]. CIESC Journal, 2019, 70(3): 850-856.
[15] Xiaoshi LIU, Deqiu ZOU, Ruijun HE, Xianfeng MA. Preparation and heat transfer characteristics of GO/paraffin composite phase change emulsions [J]. CIESC Journal, 2019, 70(3): 1188-1197.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LING Lixia, ZHANG Riguang, WANG Baojun, XIE Kechang. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] LEI Zhigang, LONG Aibin, JIA Meiru, LIU Xueyi. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] SU Haifeng, LIU Huaikun, WANG Fan, LÜXiaoyan, WEN Yanxuan. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] WANG Jianlin, XUE Yaoyu, YU Tao, ZHAO Liqiang. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] SUN Fubao, MAO Zhonggui, ZHANG Jianhua, ZHANG Hongjian, TANG Lei, ZHANG Chengming, ZHANG Jing, ZHAI Fangfang. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] Gao Ruichang, Song Baodong and Yuan Xiaojing( Chemical Engineering Research Center, Tianjin University, Tianjin 300072). LIQUID FLOW DISTRIBUTION IN GAS - LIQUID COUNTER - CONTACTING PACKED COLUMN[J]. , 1999, 50(1): 94 -100 .
[7] Su Yaxin, Luo Zhongyang and Cen Kefa( Institute of Thermal Power Engineering , Zhejiang University , Hangzhou 310027). A STUDY ON THE FINS OF HEAT EXCHANGERS FROM OPTIMIZATION OF ENTROPY GENERATION[J]. , 1999, 50(1): 118 -124 .
[8] Luo Xiaoping(Department of Industrial Equipment and Control Engineering , South China University of Technology, Guangzhou 510641)Deng Xianhe and Deng Songjiu( Research Institute of Chemical Engineering, South China University of Technology, Guangzhou 5106. RESEARCH ON FLOW RESISTANCE OF RING SUPPORT HEAT EXCHANGER WITH LONGITUDINAL FLUID FLOW ON SHELL SIDE[J]. , 1999, 50(1): 130 -135 .
[9] Jin Wenzheng , Gao Guangtu , Qu Yixin and Wang Wenchuan ( College of Chemical Engineering, Beijing Univercity of Chemical Technology, Beijing 100029). MONTE CARLO SIMULATION OF HENRY CONSTANT OF METHANE OR BENZENE IN INFINITE DILUTE AQUEOUS SOLUTIONS[J]. , 1999, 50(2): 174 -184 .
[10]

LI Qingzhao;ZHAO Changsui;CHEN Xiaoping;WU Weifang;LI Yingjie

.

Combustion of pulverized coal in O2/CO2 mixtures and its pore structure development

[J]. , 2008, 59(11): 2891 -2897 .