CIESC Journal ›› 2019, Vol. 70 ›› Issue (2): 431-439.doi: 10.11949/j.issn.0438-1157.20181145

• Process system engineering • Previous Articles     Next Articles

Inter-plant waste heat integration for industrial park using two medium fluids

Changhao WU(),Linlin LIU(),Lei ZHANG,Jian DU   

  1. Institute of Chemical Process Systems Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
  • Received:2018-10-08 Revised:2018-10-22 Online:2019-02-05 Published:2018-10-29
  • Contact: Linlin LIU E-mail:claude114@163.com;liulinlin@dlut.edu.cn

Abstract:

Considering the cluster effect of industrial park, it is expectable that could improve energy efficiency of the entire park by recovering the waste heat in each single plant via inter-plant medium fluids which absorb heat in some plants and release heat into other plants. Obviously, the selection of heat exchange medium and the setting of medium heat recovery loop will highly affect the optimal design of the waste heat recovery system and the energy-saving effect. Thus, other than single medium integration strategy, this work uses both hot water and thermal oil as mediums to implement the inter-plant waste heat integration. A heat exchanger network (HEN) superstructure coupling the matches between medium fluids and inner-plant process streams and the allocation of medium streams across plants is proposed. Accordingly, a mixed-integer non-linear programming (MINLP) model is formulated for network optimization aiming at the target of minimum total annual cost. At last, an example involving three plants is studied in three synthesis cases (single medium-single loop, single medium-dual loops, and dual mediums-dual loops). The effectiveness of the proposed method was verified by comparison.

Key words: inter-plant waste heat integration, medium fluid, heat transfer, optimization, system engineering

CLC Number: 

  • TQ 021.8

Fig 1

HEN superstructure for industrial park"

Table 1

Process data of heat source plant C"

Stream F/(kW·K-1) T in /℃ T out/℃ q/kW

1

2

3

400

400

100

250

225

120

185

110

50

26000

50000

7000

Table 2

Process data of heat sink plants"

Stream F/(kW·K-1) T in /℃ T out/℃ q/kW
plant A
1 200 60 90 6000
2 200 40 100 12000
3 150 50 150 15000
4 200 50 160 22000
plant B
5 300 20 100 24000
6 600 50 70 12000
7 600 130 180 12000

Fig.2

Optimal HEN for industrial park"

Table 3

Cost results of HENs"

Item Case 1 Case 2 Case 3
cost of heat exchangers/(USD·a-1) 566873 796146 889677
hot utility /kW 42000 42000 42743.1
cold utility /kW 0 0 743.1
utility cost/(USD·a-1) 6300000 6300000 6417410
cost of piping and pumping/(USD·a-1) 460345 428479 439814
TAC of HEN/(USD·a-1) 7327217 7524625 7746901

Fig.3

Single medium-dual loops HEN for industrial park"

Fig.4

Single medium-single loop HEN for industrial park"

"

A ——过程换热器面积,m2
A hu,A cu ——分别为热、冷公用工程面积,m2
A f ——年度费用因子
B,D ——换热器面积费用系数
C hu,C cu ——分别为热、冷公用工程单位费用,USD?kW-1?a-1
CH ——换热器的固定安装费用,USD?a-1
ec(p,i) ——pi过程流股的热负荷,kW
ec(p,j) ——pj过程流股的热负荷,kW
F(p,i) ——p厂中i过程流股的热容流率,kW?K-1
F(p,j) ——p厂中j过程流股的热容流率,kW?K-1
F c(p,g) ——pg冷介质流股的热容流率,kW?K-1
F h(p,g) ——pg热介质流股的热容流率,kW?K-1
f(p,g,p') ——p厂至p'g介质流股热容流率,kW?K-1
f(p',g,p) ——p'厂至pg介质流股热容流率,kW?K-1
K ——传热系数
NOK ——换热器网络总级数
piping ——管道费用,USD?a-1
pumping ——泵送费用,USD?a-1
q h,q c ——分别为热、冷中间介质与过程流股换热量,kW
q hu,q cu ——分别为热、冷公用工程换热量,kW
ΔT ——换热器的平均传热温差,℃
ΔT min ——最小传热温差,℃
t(p,i,k) ——pi热过程流股在k级的温度,℃
t(p,j,k) ——pj冷过程流股在k级的温度,℃
t c(p,g,k) ——pg冷中间介质流股在k级的温度,℃
t c , in(p,g) ——g冷中间介质流股入p厂的温度,℃
t c , out(p′,g) ——g冷中间介质流股出p′厂的温度,℃
t h(p,g,k) ——pg热中间介质流股在k级的温度,℃
t h , in(p,g) ——g热中间介质流股入p厂的温度,℃
t h , out(p′,g) ——g热中间介质流股出p′厂的温度,℃
t in(p,i) ——pi热过程流股的起始温度,℃
t in(p,j) ——pj热过程流股的起始温度,℃
t out(p,i) ——pi热过程流股的目标温度,℃
t out(p,j) ——pj热过程流股的目标温度,℃
dt c(p,i,g,k) ——i流股与g流股于pk级的温差,℃
dt cu(p,i) ——i流股与冷公用工程于p厂的温差,℃
dt h(p,j,g,k) ——j流股与g流股于pk级的温差,℃
dt hu(p,j) ——j流股与热公用工程于p厂的温差,℃
y ——表示厂际管道是否存在的二元变量
z ——表示换热器是否存在的二元变量
Γ ——热流股与冷流股的温差最大值,℃
下角标
g ——中间介质流股
i ——热过程流股
j ——冷过程流股
k ——换热器网络级数
p ——单厂
p' ——p厂以外的其余单厂
1 Lowe E A , Moran S R , Holmes D B . Eco-Industrial Parks: A Handbook for Local Development Teams[M]. Oakland, CA: Indigo Development, 1992: 13-14.
2 Linnhoff B . Pinch analysis—a state-of-the-art overview[J]. Chemical Engineering Research & Design, 1993, 71: 503-522.
3 Shenoy U V . Heat Exchanger Network Synthesis Process Optimization by Energy and Resource Analysis[M]. Houston, TX: Gulf Professional Publishing, 1995: 367-398.
4 Smith R . Chemical Process Design and Integration[M]. UK:John Wiley&Sons, 2005.
5 El-Halwagi M M . Process Integration: Volume 7 (Process Systems Engineering) [M]. USA: Academic Press, 2006.
6 Garbs M . Pinch analysis and process integration: a user guide on process integration for the efficient use of energy[J]. Journal of Cleaner Production, 2016, 110: 203.
7 Morton R J , Linnhoff B . Individual process improvements in the context of site wide interactions[C]//IChemE 11th Annual Research Meeting. UK: Bath, 1984.
8 Ahmad S , Hui D C W . Heat recovery between areas of integrity[J]. Computers & Chemical Engineering, 1991, 15(12): 809-832.
9 Hu C W , Ahmad S . Total site heat integration using the utility system[J]. Computers & Chemical Engineering, 1994, 18(8): 729-742.
10 Goršek A , Glavič P , Bogataj M . Design of the optimal total site heat recovery system using SSSP approach[J]. Chemical Engineering & Processing Process Intensification, 2006, 45(5): 372-382.
11 Rodera H , Bagajewicz M J . Targeting procedures for energy savings by heat integration across plants[J]. AIChE Journal, 1999, 45(8): 1721-1742.
12 Bagajewicz M , Rodera H . Energy savings in the total site heat integration across many plants[J]. Computers & Chemical Engineering, 2000, 24(2): 1237-1242.
13 And H R , Bagajewicz M J . Multipurpose heat-exchanger networks for heat integration across plants[J]. Industrial & Engineering Chemistry Research, 2001, 40(23): 5585-5603.
14 Bagajewicz M , Rodera H . Multiple plant heat integration in a total site[J]. AIChE Journal, 2002, 48(10): 2255-2270.
15 Bandyopadhyay S , Varghese J , Bansal V . Targeting for cogeneration potential through total site integration[J]. Applied Thermal Engineering, 2010, 30(1): 6-14.
16 Suaysompol K , Wood R M . Estimation of the installed cost of heat exchanger networks[J]. International Journal of Production Economics, 1993, 29(3): 303-312.
17 Jiang D , Chang C T . A new approach to generate flexible multiperiod heat exchanger network designs with timesharing mechanisms[J]. Industrial & Engineering Chemistry Research, 2013, 52(10): 3794-3804.
18 Geng Y , Zhang P , Ulgiati S , et al . Energy analysis of an industrial park: the case of Dalian, China[J]. Science of the Total Environment, 2010, 408(22): 5273-5283.
19 Linnhoff B , Eastwood A R . Overall site optimisation by pinch technology[J]. Chemical Engineering Research & Design, 1997, 75(75): S138-S144.
20 Klemeš J , Dhole V R , Raissi K , et al . Targeting and design methodology for reduction of fuel, power and CO2 on total sites[J]. Applied Thermal Engineering, 1997, 17(8/9/10): 993-1003.
21 Khoshgoftar Manesha M H , Amidpoura M , Khamis Abadi S , et al . A new cogeneration targeting procedure for total site utility system[J]. Applied Thermal Engineering, 2013, 54(1): 272-280.
22 Chew K H , Klemeš J J , Alwi S R W , et al . Process modifications to maximise energy savings in total site heat integration[J]. Applied Thermal Engineering, 2015, 78: 731-739.
23 Chew K H , Klemeš J J , Alwi S R W , et al . Process modification of total site heat integration profile for capital cost reduction[J]. Applied Thermal Engineering, 2015, 89: 1023-1032.
24 Tarighaleslami A H , Walmsley T G , Atkins M J , et al . Heat transfer enhancement for site level indirect heat recovery systems using nanofluids as the intermediate fluid[J]. Applied Thermal Engineering, 2016, 105: 923-930.
25 Kapil A , Bulatov I , Smith R , et al . Process integration of low grade heat in process industry with district heating networks[J]. Energy, 2012, 44(1): 11-19.
26 Boldyryev S , Varbanov P S , Lund H , et al . Low potential heat utilization of bromine plant via integration on process and total site levels[J]. Energy, 2015, 90: 47-55.
27 Hackl R , Andersson E , Harvey S . Targeting for energy efficiency and improved energy collaboration between different companies using total site analysis (TSA)[J]. Energy, 2011, 36(8): 4609-4615.
28 Wang Y , Chang C , Feng X . A systematic framework for multi-plants heat integration combining direct and indirect heat integration methods[J]. Energy, 2015, 90: 56-67.
29 Bade M H , Bandyopadhyay S . Minimization of thermal oil flow rate for indirect integration of multiple plants[J]. Industrial & Engineering Chemistry Research, 2014, 53 (33): 13146-13156.
30 Chang C , Chen X , Wang Y , et al . Simultaneous optimization of multi-plant heat integration using intermediate fluid circles[J]. Energy, 2016, 121: 306-317.
31 Rosenthal R E . GAMS—A User’s Guide[M]. Washington D C: GAMS Development Corporation, 2012.
[1] Zhe LI, Wenlong WANG, Meng ZHANG, Jing SUN, Yanpeng MAO, Xiqiang ZHAO, Zhanlong SONG. Low frequency electromagnetic parameters and absorbing heat generation properties of carbon nanotubes [J]. CIESC Journal, 2019, 70(S1): 28-34.
[2] Hao YANG, Eryan YAN. Simulation research of microwave heating efficiency for beamed energy thruster [J]. CIESC Journal, 2019, 70(S1): 93-98.
[3] Weifeng XU, Aipeng JIANG, Haokun WANG, Enhui JIANG, Qiang DING, Hanhan GAO. A grid reconstruction strategy based on pseudo Wigner-Ville analysis for dynamic optimization problem [J]. CIESC Journal, 2019, 70(S1): 158-167.
[4] Yanrao CHEN, Taoyan MAO, Cheng ZHENG. Microwave synthesis and properties of dioctadecyldihydroxyethyl ammonium bromide [J]. CIESC Journal, 2019, 70(S1): 226-234.
[5] Siyu SHAN, Hongbo TAN. Study on heat and mass transfer characteristics outside flat tube for evaporative condensers [J]. CIESC Journal, 2019, 70(S1): 69-78.
[6] Junlan YANG, Shuying NING. Study on boiling heat transfer characteristics of CO2/ lubricating oil mixture in mini-channel tube [J]. CIESC Journal, 2019, 70(5): 1772-1778.
[7] Nenglian FENG, Ruijin MA, Longke CHEN, Shikang DONG, Xiaofeng WANG, Xingyu ZHANG. Heat transfer characteristics of honeycomb liquid-cooled power battery module [J]. CIESC Journal, 2019, 70(5): 1713-1722.
[8] Yuting CHEN, Yanyan XU, Lei WANG, Shuang YE, Weiguang HUANG. Effect of evaporator heat transfer process on selection of mixture and operating condition in ORC system [J]. CIESC Journal, 2019, 70(5): 1723-1733.
[9] Shuang ZHANG, Lei ZHAO, Lin GAO, Hua LIU. Exploration on thermo-mechanical characteristics of energy piles with double-U pipes buried in parallel by means of numerical simulations [J]. CIESC Journal, 2019, 70(5): 1750-1760.
[10] Liangjie JIN, Peng BAI, Xianghai GUO. Energy-saving optimization of partial diabatic distillation with side streams [J]. CIESC Journal, 2019, 70(5): 1804-1814.
[11] Dong HUANG, Xionglin LUO. Judgement of process transition control strategies for large-range conditions change of chemical processes [J]. CIESC Journal, 2019, 70(5): 1848-1857.
[12] Jianguo YAN, Fengling ZHU, Pengcheng GUO, Xingqi LUO. Convective heat transfer of supercritical CO2 flowing a mini circular tube under high heat flux and low mass flux conditions [J]. CIESC Journal, 2019, 70(5): 1779-1787.
[13] Qin WANG, Bingjian ZHANG, Chang HE, Qinglin CHEN. Solvent evaluation model base on energy consumption objective for aromatic extraction distillation units [J]. CIESC Journal, 2019, 70(5): 1815-1822.
[14] Xi CHEN, Yi LIN, Shuai SHAO. Influences of inclination angle and heating power on heat transfer performance of ethane pulsating heat pipe [J]. CIESC Journal, 2019, 70(4): 1383-1389.
[15] Peng LI, Zhonghe HAN, Xiaoqiang JIA, Zhongkai MEI, Xu HAN. Influence of dynamic turbine efficiency on performance of organic Rankine cycle system [J]. CIESC Journal, 2019, 70(4): 1532-1541.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LING Lixia, ZHANG Riguang, WANG Baojun, XIE Kechang. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] LEI Zhigang, LONG Aibin, JIA Meiru, LIU Xueyi. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] SU Haifeng, LIU Huaikun, WANG Fan, LÜXiaoyan, WEN Yanxuan. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] WANG Jianlin, XUE Yaoyu, YU Tao, ZHAO Liqiang. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] SUN Fubao, MAO Zhonggui, ZHANG Jianhua, ZHANG Hongjian, TANG Lei, ZHANG Chengming, ZHANG Jing, ZHAI Fangfang. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] Gao Ruichang, Song Baodong and Yuan Xiaojing( Chemical Engineering Research Center, Tianjin University, Tianjin 300072). LIQUID FLOW DISTRIBUTION IN GAS - LIQUID COUNTER - CONTACTING PACKED COLUMN[J]. , 1999, 50(1): 94 -100 .
[7] Su Yaxin, Luo Zhongyang and Cen Kefa( Institute of Thermal Power Engineering , Zhejiang University , Hangzhou 310027). A STUDY ON THE FINS OF HEAT EXCHANGERS FROM OPTIMIZATION OF ENTROPY GENERATION[J]. , 1999, 50(1): 118 -124 .
[8] Luo Xiaoping(Department of Industrial Equipment and Control Engineering , South China University of Technology, Guangzhou 510641)Deng Xianhe and Deng Songjiu( Research Institute of Chemical Engineering, South China University of Technology, Guangzhou 5106. RESEARCH ON FLOW RESISTANCE OF RING SUPPORT HEAT EXCHANGER WITH LONGITUDINAL FLUID FLOW ON SHELL SIDE[J]. , 1999, 50(1): 130 -135 .
[9] Jin Wenzheng , Gao Guangtu , Qu Yixin and Wang Wenchuan ( College of Chemical Engineering, Beijing Univercity of Chemical Technology, Beijing 100029). MONTE CARLO SIMULATION OF HENRY CONSTANT OF METHANE OR BENZENE IN INFINITE DILUTE AQUEOUS SOLUTIONS[J]. , 1999, 50(2): 174 -184 .
[10]

LI Qingzhao;ZHAO Changsui;CHEN Xiaoping;WU Weifang;LI Yingjie

.

Combustion of pulverized coal in O2/CO2 mixtures and its pore structure development

[J]. , 2008, 59(11): 2891 -2897 .