CIESC Journal ›› 2019, Vol. 70 ›› Issue (2): 431-439.doi: 10.11949/j.issn.0438-1157.20181145
• Process system engineering • Previous Articles Next Articles
Changhao WU(),Linlin LIU(
),Lei ZHANG,Jian DU
CLC Number:
1 | Lowe E A , Moran S R , Holmes D B . Eco-Industrial Parks: A Handbook for Local Development Teams[M]. Oakland, CA: Indigo Development, 1992: 13-14. |
2 | Linnhoff B . Pinch analysis—a state-of-the-art overview[J]. Chemical Engineering Research & Design, 1993, 71: 503-522. |
3 | Shenoy U V . Heat Exchanger Network Synthesis Process Optimization by Energy and Resource Analysis[M]. Houston, TX: Gulf Professional Publishing, 1995: 367-398. |
4 | Smith R . Chemical Process Design and Integration[M]. UK:John Wiley&Sons, 2005. |
5 | El-Halwagi M M . Process Integration: Volume 7 (Process Systems Engineering) [M]. USA: Academic Press, 2006. |
6 | Garbs M . Pinch analysis and process integration: a user guide on process integration for the efficient use of energy[J]. Journal of Cleaner Production, 2016, 110: 203. |
7 | Morton R J , Linnhoff B . Individual process improvements in the context of site wide interactions[C]//IChemE 11th Annual Research Meeting. UK: Bath, 1984. |
8 | Ahmad S , Hui D C W . Heat recovery between areas of integrity[J]. Computers & Chemical Engineering, 1991, 15(12): 809-832. |
9 | Hu C W , Ahmad S . Total site heat integration using the utility system[J]. Computers & Chemical Engineering, 1994, 18(8): 729-742. |
10 | Goršek A , Glavič P , Bogataj M . Design of the optimal total site heat recovery system using SSSP approach[J]. Chemical Engineering & Processing Process Intensification, 2006, 45(5): 372-382. |
11 | Rodera H , Bagajewicz M J . Targeting procedures for energy savings by heat integration across plants[J]. AIChE Journal, 1999, 45(8): 1721-1742. |
12 | Bagajewicz M , Rodera H . Energy savings in the total site heat integration across many plants[J]. Computers & Chemical Engineering, 2000, 24(2): 1237-1242. |
13 | And H R , Bagajewicz M J . Multipurpose heat-exchanger networks for heat integration across plants[J]. Industrial & Engineering Chemistry Research, 2001, 40(23): 5585-5603. |
14 | Bagajewicz M , Rodera H . Multiple plant heat integration in a total site[J]. AIChE Journal, 2002, 48(10): 2255-2270. |
15 | Bandyopadhyay S , Varghese J , Bansal V . Targeting for cogeneration potential through total site integration[J]. Applied Thermal Engineering, 2010, 30(1): 6-14. |
16 | Suaysompol K , Wood R M . Estimation of the installed cost of heat exchanger networks[J]. International Journal of Production Economics, 1993, 29(3): 303-312. |
17 | Jiang D , Chang C T . A new approach to generate flexible multiperiod heat exchanger network designs with timesharing mechanisms[J]. Industrial & Engineering Chemistry Research, 2013, 52(10): 3794-3804. |
18 | Geng Y , Zhang P , Ulgiati S , et al . Energy analysis of an industrial park: the case of Dalian, China[J]. Science of the Total Environment, 2010, 408(22): 5273-5283. |
19 | Linnhoff B , Eastwood A R . Overall site optimisation by pinch technology[J]. Chemical Engineering Research & Design, 1997, 75(75): S138-S144. |
20 | Klemeš J , Dhole V R , Raissi K , et al . Targeting and design methodology for reduction of fuel, power and CO2 on total sites[J]. Applied Thermal Engineering, 1997, 17(8/9/10): 993-1003. |
21 | Khoshgoftar Manesha M H , Amidpoura M , Khamis Abadi S , et al . A new cogeneration targeting procedure for total site utility system[J]. Applied Thermal Engineering, 2013, 54(1): 272-280. |
22 | Chew K H , Klemeš J J , Alwi S R W , et al . Process modifications to maximise energy savings in total site heat integration[J]. Applied Thermal Engineering, 2015, 78: 731-739. |
23 | Chew K H , Klemeš J J , Alwi S R W , et al . Process modification of total site heat integration profile for capital cost reduction[J]. Applied Thermal Engineering, 2015, 89: 1023-1032. |
24 | Tarighaleslami A H , Walmsley T G , Atkins M J , et al . Heat transfer enhancement for site level indirect heat recovery systems using nanofluids as the intermediate fluid[J]. Applied Thermal Engineering, 2016, 105: 923-930. |
25 | Kapil A , Bulatov I , Smith R , et al . Process integration of low grade heat in process industry with district heating networks[J]. Energy, 2012, 44(1): 11-19. |
26 | Boldyryev S , Varbanov P S , Lund H , et al . Low potential heat utilization of bromine plant via integration on process and total site levels[J]. Energy, 2015, 90: 47-55. |
27 | Hackl R , Andersson E , Harvey S . Targeting for energy efficiency and improved energy collaboration between different companies using total site analysis (TSA)[J]. Energy, 2011, 36(8): 4609-4615. |
28 | Wang Y , Chang C , Feng X . A systematic framework for multi-plants heat integration combining direct and indirect heat integration methods[J]. Energy, 2015, 90: 56-67. |
29 | Bade M H , Bandyopadhyay S . Minimization of thermal oil flow rate for indirect integration of multiple plants[J]. Industrial & Engineering Chemistry Research, 2014, 53 (33): 13146-13156. |
30 | Chang C , Chen X , Wang Y , et al . Simultaneous optimization of multi-plant heat integration using intermediate fluid circles[J]. Energy, 2016, 121: 306-317. |
31 | Rosenthal R E . GAMS—A User’s Guide[M]. Washington D C: GAMS Development Corporation, 2012. |
|