CIESC Journal ›› 2019, Vol. 70 ›› Issue (3): 979-986.doi: 10.11949/j.issn.0438-1157.20181140

• Process system engineering • Previous Articles     Next Articles

Optimal control strategies combined with PSO and control vector parameterization for batchwise chemical process

Bowen SHI1(),Yanyan YIN2,Fei LIU1()   

  1. 1. Key Laboratory of Advanced Control for Light Industry Process, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu, China
    2. Department of Mathematics and Statistics, Curtin University, Perth 6102, Australia
  • Received:2018-10-08 Revised:2018-12-18 Online:2019-03-05 Published:2018-12-19
  • Contact: Fei LIU E-mail:bowen_1230@126.com;fliu@jiangnan.edu.cn

Abstract:

As a gradient search algorithm for dynamic optimization of chemical process, the efficiency of control vector parameterization depends on the initial given trajectory deeply. At present, the initial trajectory is usually set at the boundary value or the intermediate value, which does not have enough scientific reason and it affects the convergence speed of the algorithm. To solve this problem, a hybrid strategy combined with particle swarm optimization and control vector parameterization method is proposed in this paper, it uses particle swarm optimization to achieve the value of control variables before employing the method of control vector parameterization to reoptimize the process. The two-layer optimization hybrid strategy improves the convergence speed of the control vector parameterization method and the precision of the particle swarm optimization. The hybrid strategy is applied to two examples of batch chemical process optimization control, and the simulation results show that the algorithm is feasible and effective for solving dynamic optimization problems of chemical process.

Key words: batchwise, process control, control vector parameterization, optimal control, optimization

CLC Number: 

  • TQ 021.8

Fig.1

Piecewise constant parameterization"

Fig.2

Flowchart of PSO-CVP algorithms"

Fig.3

Optimal temperature control trajectory"

Fig.4

Optimal state variable trajectory"

Table 1

Setting parameters of PSO-CVP algorithm"

Parameter Value
quantity of swarm 100
dimension of particle 25
maximum number of iterations 100
accelerated factor c1 2
accelerated factor c2 2
inertia weight 0.8

"

Ref. Method Optimum
[14] SQP 0.610775
[15] ACSO 0.61045
[16] OC 0.61
[17] IACA(N=10) 0.61
[17] IACA(N=20) 0.6104
this work PSO-CVP 0.6105359

Fig.5

Lee-Ramirez biochemical reactor"

Table 3

Lee-Ramirez reactor parameters"

Parameter Meaning Value
C n f /(g/L) nutrients feed 100
k s/(g2/L2) matrix inhibition 111.5
Y increased quantities of yield 0.51
k CN/(g/L) constant 14.35
f IO/(g/L) constant 0.005
k 11/h-1 constant 0.09
μ max/h-1 maximum growth rate 1.0
f max/h-1 maximum protein yield 0.233
k cr/(g/L) constant 0.22
k 1 x /(g/L) constant 0.034
kI /(g/L) constant 0.022

Fig.6

Optimal control trajectory"

Fig.7

Optimal state variable trajectory"

Fig.8

Substrate state variable trajectory of x 3(t)"

Fig.9

Mass of foreign protein"

Table 4

Setting parameters of PSO-CVP algorithm"

Parameter Value
quantity of swarm 200
dimension of particle 30
maximum number of iterations 500
accelerated factor c1 2
accelerated factor c2 2
inertia weight 0.8

"

Ref. Method Optimum
[19] FIDP 6.16
[20] GA 6.1504
[21] biogeographic algorithm 6.15
[22] CVP 6.15123355
[23] multiple shooting 6.15153759
this work PSO-CVP 6.15154923
1 庄绪君, 李宏光 . 基于遗传算法与迭代动态规划混合策略的青霉素发酵过程优化控制[J]. 计算机与应用化学, 2013, 30(9): 1051-1054.
Zhuang X J , Li H G . Optimal control of penicillin fermentation process based on genetic algorithm and iterative dynamic programming[J]. Computer and Applied Chemistry, 2013, 30(9):1051-1054.
2 Pollard J P , Sargent R W H . Off line computation of optimum controls for a plate distillation column[J]. Automatica, 1970, 6(1): 59-76.
3 Sargent R W H , Sullivan G R . The development of an efficient optimal control package[J]. Nonlinear and Stochastic Programming, 1979, 13(7): 158-168.
4 Vassiliadis V S , Sargent R W H , Pantelides C C . Solution of a class of multistage dynamic optimization problems(Ⅱ): Problems with path constraints[J]. I&EC Research, 1994, 33(9): 2123-2133.
5 Martin S , Klaus S , Thomas B , et al . Dynamic optimization using adaptive control vector parameterization[J]. Computers & Chemical Engineering, 2005, 29(8): 1731-1751.
6 Wang P , Tian X M . Enhanced control vector parameterization method and its application in dynamic optimization[J]. Control & Decision, 2009, 24(11): 1757-1760.
7 Chen X , Du W L , Huaglory T , et al . Dynamic optimization of industrial processes with nonuniform discretization-based control vector parameterization[J]. IEEE Transactions on Automation Science & Engineering, 2014, 11(4): 1289-1299.
8 Teo K L , Jennings L S , Lee H W J , et al . The control parametrization enhancing transform for constrained optimal control problems[J].J. Austral. Math. Soc. Sen. B, 1999, 40: 314-335.
9 Li G D , Liu P , Liu X G . A control parameterization approach with variable time nodes for optimal control problems[J]. Asian Journal of Control, 2016, 18(3): 976-984.
10 Binder T , Cruse A , Cruz Villar C A , et al . Dynamic optimization using a wavelet based adaptive control[J]. Computers and Chemical Engineering, 2000, 24: 1201-1207.
11 Liu P , Li G D , Liu X G . Fast engineering optimization: a novel highly effective control parameterization approach for industrial dynamic processes[J]. Isa Transactions, 2015, 58: 248-254.
12 Sun F , Zhong W M , Cheng H , et al . Novel control vector parameterization method with differential evolution algorithm and its application in dynamic optimization of chemical processes[J]. Chinese Journal of Chemical Engineering , 2013, 21(1): 64-71.
13 王东风, 孟丽 . 粒子群优化算法的性能分析和参数选择[J]. 自动化学报, 2016, 42(10): 1552-1561.
Wang D F , Meng L . Performance analysis and parameter selection of particle swarm optimization algorithm [J]. Journal of Automation, 2016, 42(10): 1552-1561.
14 Logsdon J S , Biegler L T . A relaxed reduced space SQP strategy for dynamic optimization problems[J]. Computers & Chemical Engineering, 1993, 17(4): 367-372.
15 Rajesh J , Gupta K , Kusumakar H S , et al . Dynamic optimization of chemical processes using ant colony framework[J]. Computers & Chemistry, 2001, 25(6): 583-595.
16 Renfro J G , Morshedi A M , Asbjornsen O A . Simultaneous optimization and solution of systems described by differential algebraic equations[J]. Computers & Chemical Engineering, 1987, 11(5): 503-517.
17 Zhang B , Chen D Z , Zhao W . Iterative ant-colony algorithm and its application to dynamic optimization of chemical process[J]. Computers & Chemical Engineering, 2005, 29(10): 2078-2086.
18 Lee J , Ramirez W F . Optimal fed-batch control of induced foreign protein production by recombinant bacteria[J]. AIChE Journal, 1994, 40(5): 899-907.
19 Tholudur A , Ramirez W F . Obtaining smoother singular arc policies using a modified iterative dynamic programming algorithm[J]. International Journal of Control, 1997, 68(5): 1115-1128.
20 Sarkar D , Modak J M . Optimization of fed-batch bioreactors using genetic algorithm: multiple control variables[J]. Computers & Chemical Engineering, 2004, 28(5): 789-798.
21 Nikumb S , Ghosh S , Jayaraman V K , et al . Biogeography-based optimization for dynamic optimization of chemical reactors[M]// Applications of Mataheuristics in Process Engineering, Springer ,2014: 201-216.
22 Hirmaje T , Balsacanto E , Banga J R . DOTcvpSB, a software toolbox for dynamic optimization in systems biology[J]. BMC Bioinformatics, 2009, 10: 199.
23 黎向宇 . 基于时间网格重构的多重打靶最优控制策略研究[D]. 杭州: 浙江大学, 2017.
Li X Y . Study on optimal control strategy for multiple targets based on time grid reconstruction[D]. Hangzhou: Zhejiang University, 2017.
[1] Enwei ZHI, Fei YAN, Mifeng REN, Gaowei YAN. Soft sensor of wet ball mill load parameters based on transfer variational autoencoder - label mapping [J]. CIESC Journal, 2019, 70(S1): 150-157.
[2] Hao YANG, Eryan YAN. Simulation research of microwave heating efficiency for beamed energy thruster [J]. CIESC Journal, 2019, 70(S1): 93-98.
[3] Weifeng XU, Aipeng JIANG, Haokun WANG, Enhui JIANG, Qiang DING, Hanhan GAO. A grid reconstruction strategy based on pseudo Wigner-Ville analysis for dynamic optimization problem [J]. CIESC Journal, 2019, 70(S1): 158-167.
[4] Yanrao CHEN, Taoyan MAO, Cheng ZHENG. Microwave synthesis and properties of dioctadecyldihydroxyethyl ammonium bromide [J]. CIESC Journal, 2019, 70(S1): 226-234.
[5] Liangjie JIN, Peng BAI, Xianghai GUO. Energy-saving optimization of partial diabatic distillation with side streams [J]. CIESC Journal, 2019, 70(5): 1804-1814.
[6] Dong HUANG, Xionglin LUO. Judgement of process transition control strategies for large-range conditions change of chemical processes [J]. CIESC Journal, 2019, 70(5): 1848-1857.
[7] Qin WANG, Bingjian ZHANG, Chang HE, Qinglin CHEN. Solvent evaluation model base on energy consumption objective for aromatic extraction distillation units [J]. CIESC Journal, 2019, 70(5): 1815-1822.
[8] Aipeng JIANG, Quannan ZHANG, Haokun WANG, Qiang DING, Weifeng XU, Jian WANG. An improved dynamic real time optimization strategy for heat pump heating system [J]. CIESC Journal, 2019, 70(4): 1494-1504.
[9] Peng LI, Zhonghe HAN, Xiaoqiang JIA, Zhongkai MEI, Xu HAN. Influence of dynamic turbine efficiency on performance of organic Rankine cycle system [J]. CIESC Journal, 2019, 70(4): 1532-1541.
[10] Qian ZHANG, Xiangyang LIU, Wang CHEN, Heng WU, Pengying XIAO, Fangying JI, Chen LI, Haiming NIAN. Preparation of a novel phosphorus removal filler and optimization of phosphate removal adsorption bed process [J]. CIESC Journal, 2019, 70(3): 1099-1110.
[11] Zhizhen WANG, Zhiyun ZOU. Nonlinear predictive control strategies of pH neutralization process based on neural networks [J]. CIESC Journal, 2019, 70(2): 678-686.
[12] Qilei LIU, Kun FENG, Linlin LIU, Jian DU, Qingwei MENG, Lei ZHANG. Reaction solvent design method based on Dragon descriptors and modified decision tree-genetic algorithm [J]. CIESC Journal, 2019, 70(2): 533-540.
[13] Xiaozheng GUO, Linlin LIU, Lei ZHANG, Jian DU. Property integration of batch process based on interceptors in semi-continuous operation [J]. CIESC Journal, 2019, 70(2): 516-524.
[14] Zhencheng YE, Huanlan ZHOU, Debao RAO. Hybrid modeling and optimization of acetylene hydrogenation process [J]. CIESC Journal, 2019, 70(2): 496-507.
[15] Changhao WU, Linlin LIU, Lei ZHANG, Jian DU. Inter-plant waste heat integration for industrial park using two medium fluids [J]. CIESC Journal, 2019, 70(2): 431-439.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LING Lixia, ZHANG Riguang, WANG Baojun, XIE Kechang. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] LEI Zhigang, LONG Aibin, JIA Meiru, LIU Xueyi. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] SU Haifeng, LIU Huaikun, WANG Fan, LÜXiaoyan, WEN Yanxuan. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] WANG Jianlin, XUE Yaoyu, YU Tao, ZHAO Liqiang. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] SUN Fubao, MAO Zhonggui, ZHANG Jianhua, ZHANG Hongjian, TANG Lei, ZHANG Chengming, ZHANG Jing, ZHAI Fangfang. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] Gao Ruichang, Song Baodong and Yuan Xiaojing( Chemical Engineering Research Center, Tianjin University, Tianjin 300072). LIQUID FLOW DISTRIBUTION IN GAS - LIQUID COUNTER - CONTACTING PACKED COLUMN[J]. , 1999, 50(1): 94 -100 .
[7] Su Yaxin, Luo Zhongyang and Cen Kefa( Institute of Thermal Power Engineering , Zhejiang University , Hangzhou 310027). A STUDY ON THE FINS OF HEAT EXCHANGERS FROM OPTIMIZATION OF ENTROPY GENERATION[J]. , 1999, 50(1): 118 -124 .
[8] Luo Xiaoping(Department of Industrial Equipment and Control Engineering , South China University of Technology, Guangzhou 510641)Deng Xianhe and Deng Songjiu( Research Institute of Chemical Engineering, South China University of Technology, Guangzhou 5106. RESEARCH ON FLOW RESISTANCE OF RING SUPPORT HEAT EXCHANGER WITH LONGITUDINAL FLUID FLOW ON SHELL SIDE[J]. , 1999, 50(1): 130 -135 .
[9] Jin Wenzheng , Gao Guangtu , Qu Yixin and Wang Wenchuan ( College of Chemical Engineering, Beijing Univercity of Chemical Technology, Beijing 100029). MONTE CARLO SIMULATION OF HENRY CONSTANT OF METHANE OR BENZENE IN INFINITE DILUTE AQUEOUS SOLUTIONS[J]. , 1999, 50(2): 174 -184 .
[10]

LI Qingzhao;ZHAO Changsui;CHEN Xiaoping;WU Weifang;LI Yingjie

.

Combustion of pulverized coal in O2/CO2 mixtures and its pore structure development

[J]. , 2008, 59(11): 2891 -2897 .