CIESC Journal ›› 2018, Vol. 69 ›› Issue (S2): 31-37.doi: 10.11949/j.issn.0438-1157.20181103

Previous Articles     Next Articles

Selection of state equations for evaporation calculation in LNG receiving terminal

LI Ran1, LIU Jingjun2, LI Yuxing1, YIN Yue2, ZHU Jianlu1, CHEN Wenjie2, WANG Wuchang1   

  1. 1 College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao 266580, Shandong, China;
    2 Qingdao LNG Co., Ltd., Sinopec, Qingdao 266580, Shandong, China
  • Received:2018-09-28 Revised:2018-10-05
  • Supported by:

    supported by the Fundamental Research Funds for the Central Universities (14CX02207A) and the National Natural Science Foundation of China (51504278).


LNG physical parameters are the basis for the establishment of LNG receiving terminal model, process simulation calculation. Based on foreign experimental data, Aspen HYSYS software was used to analyze and evaluate the prediction accuracy of physical parameters such as density, enthalpy, and dew point of PR, SRK, LKP and BWRS equations, and evaluate the gas-liquid equilibrium and thermodynamic parameters calculation model. The tank evaporation model of the LNG receiving terminal was established to compare the accuracy of the four equations of state. The results showed that the PR equation had the highest prediction accuracy in the calculation of gas-liquid phase equilibrium, and the relative error was 4.70%. The most accurate thermodynamic parameters were calculated by LKP equation, and the prediction error was 2.59%. Considering the calculation accuracy of thermodynamic parameters and phase equilibrium parameters, the PR equation had the highest precision and the prediction error was 3.77%. In addition, the simulation results of evaporation and tank pressure by PR equation are in good agreement with the field data. Therefore, PR equation is recommended for evaporation calculation of LNG receiving station. The research results are useful for the selection of physical parameters and the equation of state for evaporation calculation of LNG receiving station.

CLC Number: 

  • TH642

[1] 施纪文.LNG接收站储罐形式及储罐大型化发展趋势[J].煤气与热力, 2014, 34(6):5-8.SHI J W.Types of tanks in LNG receiving station and development trend of large-scale tanks[J].Gas & Heat, 2014, 34(6):5-8.
[2] 吴玉国, 陈保东.BWRS方程在天然气物性计算中的应用[J].油气储运, 2003, 22(10):16-21.WU Y G, CHEN B D.The application of BWRS equation in calculating the thermo-physical properties of natural gas[J].Oil & Gas Storage and Transportation, 2003, 22(10):16-21.
[3] 刘璐, 刘宝玉, 李少华, 等.LNG热物性计算[J].当代化工, 2010, 39(6):696-698.LIU L, LIU B Y, LI S H, et al.Calculation of LNG thermodynamic properties[J].Contemporary Chemical Industry, 2010, 39(6):696-698.
[4] 李佩铭, 焦文玲, 张世泽.天然气液化中采用PR方程的气液相平衡计算[J].煤气与热力, 2008, 28(4):21-24.LI P M, JIAO W L, ZHANG S Z.Calculation of vapor-liquid phase equilibrium by PR equation in natural gas liquefaction[J].Gas & Heat, 2008, 28(4):21-24.
[5] 梁平, 王治红, 李志铭, 等.基于SRK状态方程的烃类液相密度计算校正[J].西南石油大学学报(自然科学版), 2009, 31(3):118-120.LIANG P, WANG Z H, LI Z M, et al.The correction of calculation in forecasting the hydrocarbon liquid phase density based on SRK state equation[J].Journal of Southwest Petroleum University (Science & Technology Edition), 2009, 31(3):118-120.
[6] 郑大庆.改进SRK方程提高正构烷烃饱和蒸气压和液体体积预测精度[J].化工学报, 1997, 48(2):221-226.ZHENG D Q.Modified SRK equation of state to improve prediction of saturated vapor pressures and saturated volumes of alkanes[J].Journal of Chemical Industry and Engineering (China), 1997, 48(2):221-226.
[7] CASTILLO L, DAHOUK M M, SCIPIO S D, et al.Conceptual analysis of the precooling stage for LNG processes[J].Energy Conversion & Management, 2013, 66(2):41-47.
[8] KHAN M S, LEE M.Design optimization of single mixed refrigerant natural gas liquefaction process using the particle swarm paradigm with nonlinear constraints[J].Energy, 2013, 49(1):146-155.
[9] MOEIN P, SARMAD M, EBRAHIMI H, et al.APCI-LNG single mixed refrigerant process for natural gas liquefaction cycle:analysis and optimization[J].Journal of Natural Gas Science & Engineering, 2015, 26(9):470-479.
[10] CUI M M, YUAN Z M, SONG R, et al.Performance improvement of a boil-off gas re-condensation process with pre-cooling at LNG terminals[J].International Journal of Thermodynamics, 2015, 18(2):74-80.
[11] 夏岩.基于BOG波动的LNG接收站工艺操作优化[D].广州:华南理工大学, 2013.XIA Y.Operating optimization against the fluctuation of BOG in LNG receiving terminal[D].Guangzhou:South China University of Technology, 2013.
[12] 黄莉.大型LNG储罐气相空间模拟研究[D].成都:西南石油大学, 2006.HUANG L.Gas phase space simulation of large LNG storage tank[D].Chengdu:Southwest Petroleum University, 2006.
[13] 陈蒙.LNG接收站BOG多阶压缩再冷凝动态工艺设计研究[D].广州:华南理工大学, 2014.CHEN M.Research on the design of dynamic process of BOG multi-stage compression and recondensation at LNG receiving terminal[D].Guangzhou:South China University of Technology, 2014.
[14] CAO W S, LU X S, LIN W S, et al.Parameter comparison of two small-scale natural gas liquefaction processes in skid-mounted packages[J].Cryogenics, 2005, 26(8):898-904.
[15] 多志丽.青岛LNG接收站动态仿真模拟优化研究[D].青岛:中国石油大学(华东), 2014.DUO Z L.The dynamic simulation and optimization study on Qingdao LNG receiving terminal[D].Qingdao:China University of Petroleum, 2014.
[16] 崔梦梦.小型天然气液化流程及板翅式换热器结构优化研究[D].成都:西南石油大学, 2016.CUI M M.The optimization study of a small-scale natural gas liquefaction process and a plate fin heat exchanger[D].Chengdu:Southwest Petroleum University, 2016.
[17] PENG D Y, ROBINSON D B.A new two-constant equation of state[J].Minerva Ginecologica, 1976, 12(11/12):3069-3078.
[18] SOAVE G.Equilibrium constants from a modified Redlich-Kwong equation of state[J].Chemical Engineering Science, 1972, 27(6):1197-1203.
[19] LEE B I, KESLER M G.A generalized thermodynamic correlation based on three-parameter corresponding states[J].AIChE Journal, 2010, 21(3):510-527.
[20] PLOCKER U, KNAPP H, PRAUSNITZ J.Calculation of high-pressure vapor-liquid equilibria from a corresponding-states correlation with emphasis on asymmetric mixtures[J].Industrial & Engineering Chemistry Process Design & Development, 1978, 17(3):324-332.
[21] STARLING K E, HAN M S.Thermo data refined for LPG-14 mixtures[J].Hydrocarbon Processing, 1972, 51(5):129-132.
[22] MAYINGER F, AAVATSMARK I.Mathematische einführung in die thermodynamik der gemische[J].Journal of Applied Mathe Mecha, 1996, 76(4):222-222.
[23] KUNZ O, WAGNER W.The GERG-2008 wide-range equation of state for natural gases and other mixtures:an expansion of GERG-2004[J].Journal of Chemical & Engineering Data, 2012, 57(11):3032-3091.
[24] MUKHOPADHYAY M, AWASTHI R.K-value predictions for the methane-ethane-propane system[J].Cryogenics, 1981, 21(6):345-348.
[25] ASHTON G J, HASELDEN G G.Measurements of enthalpy and phase equilibrium for simulated natural gas mixtures and correlation of the results by a modified Starling equation[J].Cryogenics, 1980, 20(1):41-47.
[26] VAN KASTEREN P H G, ZELDENRUST H.A flow calorimeter for condensable gases at low temperatures and high pressures (Ⅱ):Compilation of experimental results and comparison with predictions based on a modified Redlich-Kwong equation of state[J].Industrial & Engineering Chemistry Fundamentals, 1979, 18(4):339-345.
[27] MAGEE J W, HAYNES W M, HIZA M J.Isochoric (p, ρ, T) measurements for five natural gas mixtures from T=(225 to 350) K at pressures to 35 MPa[J].Journal of Chemical Thermodynamics, 1997, 29(12):1439-1454.
[28] HWANG C A, SIMON P P, HOU H, et al.Burnett and pycnometric (p, Vm, T) measurements for natural gas mixtures[J].Journal of Chemical Thermodynamics, 1997, 29(12):1455-1472.
[29] ATILHAN M, APARICIO S, EJAZ S, et al.p-ρ-T behavior of a lean synthetic natural gas mixture using magnetic suspension densimeters and an isochoric apparatus (Ⅰ)[J].Journal of Chemical & Engineering Data, 2011, 56(56):212-221.
[30] ATILHAN M, APARICIO S, EJAZ S, et al.p-ρ-T behavior of three lean synthetic natural gas mixtures using a magnetic suspension densimeter and isochoric apparatus from (250 to 450) K with pressures up to 150 MPa (Ⅱ)[J].Journal of Chemical & Engineering Data, 2011, 56(10):3766-3774.
[31] MCLINDEN M O.p-ρ-T behavior of four lean synthetic natural-gas-like mixtures from 250 K to 450 K with pressures to 37 MPa[J].Journal of Chemical & Engineering Data, 2011, 56(3):606-613.
[32] HIZA M J, HAYNES W M, PARRISH W R.Orthobaric liquid densities and excess volumes for binary mixtures of low molarmass alkanes and nitrogen between 105 and 140 K[J].Journal of Chemical Thermodynamics, 1980, 9(9):873-896.

No related articles found!
Full text



No Suggested Reading articles found!