CIESC Journal ›› 2019, Vol. 70 ›› Issue (2): 516-524.doi: 10.11949/j.issn.0438-1157.20181074

• Process system engineering • Previous Articles     Next Articles

Property integration of batch process based on interceptors in semi-continuous operation

Xiaozheng GUO(),Linlin LIU(),Lei ZHANG,Jian DU   

  1. Institute of Chemical Process Systems Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
  • Received:2018-09-26 Revised:2018-10-24 Online:2019-02-05 Published:2018-10-29
  • Contact: Linlin LIU E-mail:dlutgxz@163.com;liulinlin@dlut.edu.cn

Abstract:

In addition to concentration of contaminant, stream properties such as toxicity, pH, chemical oxygen demand are also important characters indicating water quality. Such situation would make the design of water-using process just according to contaminant concentration fail to meet the increasingly stringent production and environmental requirements, and prompt it to be necessary to consider the simultaneous integration of stream properties in water network synthesis. In this paper, a superstructure involving property interceptors in semi-continuous operation is established for the integration of batch water network with concerning environmental constraints and the minimum total annual cost target. The property interceptors can operate at various treating rates in different time intervals, and a series of tanks are placed before and after the interceptors to satisfy the batch operation of process sources and sinks, in assistance of which the sources in the tanks in front of interceptors are allowed to be reused to sinks directly without treated by interceptors. The calculation results show that the proposed method can effectively reduce the total annual cost and reduce the number of interceptors, which verifies the effectiveness and superiority of the proposed method.

Key words: water network, batch process, integration, system engineering, optimization

CLC Number: 

  • TQ 021.8

Fig.1

Batch water network superstructure of this work"

Table 1

Date for process and fresh steams[27] "

Sources Period t F/(kg·h-1) Composition×106 Toxicity/% pH COD×10-3/(kg O2·m-3) ρ /(kg·m-3) μ /(mPa·s)
process sources(i)
1 3 8083 0.016 0.3 5.4 0.187 908.00 1.256
2 4 3900 0.024 0.5 4.8 92.10 1002.43 1.220
3 5 3279 0.220 1.5 5.1 48.85 1046.47 1.261
fresh sources(r)
1 0 0 7.0 0 1000.61 1.002
2 0.01 0.1 6.8 0.01 1002.88 0.992

Table 2

Process sinks data and limits[27] "

Sinks n Period t G/(kg·h-1) CompMax×106 pHMin pHMax ρ M i n /(kg·m-3) ρ M a x / ( k g · m - 3 ) μ M i n /(mPa·s) μ M a x /(mPa·s)
1 10 6000 0.013 5.3 8.0 817.20 1271.2 0.900 1.202
2 15 4400 0.011 5.4 7.8 771.80 1135.0 0.905 2.230
3 21 2490 0.100 5.2 8.2 819.47 1316.6 0.903 1.260

Table 3

Data of property interceptors[27] "

Property Interceptor Processing time/h Conversion factor Operating cost/(USD·kg-1) Fixed cost/USD Variable cost/(USD·period-1)
composition REC1 2 0.02 0.0065 8000 25
REC2 2 0.15 0.0033 7000 18
toxicity TOX1 1 0 0.0075 9000 15
TOX2 1 0.1 0.0063 8200 12
COD AER1 1 0.2 0.0055 6800 13
AER2 1 0.3 0.0043 5200 11
pH NEU1 1 0.5 0.0085 5200 16
NEU2 1 0.7 0.0093 4800 14
NEU3 1 1.5 0.0055 3700 13
NEU4 1 1.3 0.0065 2900 12

Table 4

Environmental constraints[27] "

Property Minimum Maximum
composition×106 0.005 0.05
toxicity/% 0 0.05
pH 5.5 9
COD × 10-3/(kg O2·m-3) 0 75

Fig.2

Optimal result of this work"

Fig.3

Result using method of Ref.[27] "

Table 5

Comparison of results"

Item Method of literature[27] Method of this paper
fresh resources/(kg·batch-1) 1545 4259
fresh cost/(USD·a-1) 4628.9 10333.4
number of interceptors 6 3
operating cost of interceptor/(USD·a-1) 38795.6 38672.8
fixed cost of interceptor/(USD·a-1) 11100.0 6420.0
variable cost of interceptor/(USD·a-1) 77640.6 29054.4
total cost of interceptor/(USD·a-1) 127536.2 74147.2
number of storage tanks 7 5
cost of storage tanks/(USD·a-1) 45237.2 61090.4
total annual cost/(USD·a-1) 177402.3 145571.0

"

ψ n , p m a x ——水阱n性质p的性质算子的最大值
ψ n , p m i n ——水阱n性质p的性质算子的最小值
ψ n , t , p i n , S K ——水阱nt时刻进口性质p的性质算子
ψ p m a x , W W ——废水性质p的性质算子的最大值
ψ p m i n , W W ——废水性质p的性质算子的最小值
ψ p W W ——废水性质p的性质算子
A f ——年度因子,A f=0.3
C k , m f i x , I N T ——性质截断器INT k 的固定费用,USD
C k , m o p e r , I N T ——性质截断器INT k 的操作费用,USD·kg-1
C k , m v a r , I N T ——性质截断器INT k 的可变费用,USD·kg-1
C k , s f i x , S ——前置储罐S k,s 的固定费用,USD
C k , s v a r , S ——前置储罐S k,s 的可变费用,USD·kg-1
C k , u f i x , U ——后置储罐U k,u 的固定费用,USD
C k , u v a r , U ——后置储罐U k,u 的可变费用,USD·kg-1
Cr ——新鲜水源的单位成本,USD·kg-1
F I i , t o u t ——水源it时刻排出的水量,kg
F I N i , n , t ——水源it时刻直接回用至水阱n的水量,kg
F I S i , k , s , t ——水源it时刻进入前置储罐S k,s 的水量,kg
F N n , t i n ——在t时刻进入水阱n的水量,kg
F R N r , n , t ——在t时刻新鲜水源r供给水阱n的水量,kg
F S k , s m a x ——前置储罐S k,s 的最大存水量,kg
F S k , s , t ——前置储罐S k,s t时刻的水量,kg
F S k , s , t i n ——前置储罐S k,s t时刻的进水量,kg
F S N k , s , n , t ——前置储罐S k,s t时刻回用至水阱n的水量,kg
F U k , u m a x ——后置储罐U k,u 的最大存水量,kg
F U k , u , t ——后置储罐U k,u t时刻的水量,kg
F U N k , u , n , t ——后置储罐U k,u t时刻回用至水阱n的水量,kg
F W r ——一个周期内需要消耗新鲜水源r的总量,kg
F W W i , t ——水源it时刻直接排废的水量,kg
f R k i n , m a x ——流入截断器INT k 的最大流率,kg·h-1
f R k , h i n ——截断器INT k 在时间间隔h内的进口流率,kg·h-1
f R k , h o u t ——截断器INT k 在时间间隔h内的出口流率,kg·h-1

f R R k , k ' , h

——截断器INT k 在时间间隔h内流入其他截断器INT k’ 的流率,kg·h-1

f R U k , u , h

——截断器INT k 在时间间隔h内流入后置缓冲储罐U k,u 的流率,kg·h-1

f S R k , s , h

——前置储罐S k,s 在时间间隔h内进入性质截断器INT k 的流率,kg·h-1
f w w k . h ——截断器INT k 在时间间隔h内排废的流率,kg·h-1
N B ——每年操作的周期数,N B=333
Δth ——时间间隔h的时长,h
WW ——一个周期内排放废水的总量,kg
yk , m ——表示性质截断器INT k 候选设备m是否存在的二元变量
y k , s S ——表示前置储罐S k,s 是否存在的二元变量
y k , u U ——表示后置储罐U k,u 是否存在的二元变量
α k , m ——性质截断器INT k 候选设备m的转化因子
ψ i , p ——过程水源i的性质p的性质算子
ψ k , h , p i n , I N T ——截断器INT k 在时间间隔h内进口性质p的性质算子

ψ k , h , p o u t , I N T

——截断器INT k 在时间间隔h内出口性质p的性质算子
ψ k , s , t , p i n , S ——前置储罐S k,s t时刻进口性质p的性质算子
ψ k , s , t , p o u t , S ——前置储罐S k,s t时刻出口性质p的性质算子
ψ k , u , t , p o u t , U ——后置储罐U k,u t时刻出口性质p的性质算子
1 Gouws J F , Majozi T , Foo D C Y , et al . Water minimization techniques for batch processes[J]. Ind. Eng. Chem. Res., 2010, 49(19): 8877-8893.
2 Kuo W , Smith R . Designing for the interactions between water-use and effluent treatment[J]. Chemical Engineering Research & Design, 1998, 76(3): 287-301.
3 Bagajewicz M J , Faria D C . On the appropriate architecture of the water/wastewater allocation problem in process plants[J]. Computer Aided Chemical Engineering, 2009, 26(9): 1-20.
4 Takama N , Kuriyama T , Shiroko K , et al . Optimal water allocation in a petroleum refinery[J]. Computers & Chemical Engineering, 1980, 4(4): 251-258.
5 Alva-Argaez A , Kokossis A C , Smith R . Wastewater minimisation of industrial systems using an integrated approach[J]. Computers & Chemical Engineering, 1998, 22(12): S741–S744.
6 Cao D , Feng X , Duan X . Design of water network with internal mains for multi-contaminant wastewater regeneration recycle[J]. Chemical Engineering Research & Design, 2004, 82(10): 1331-1336.
7 Hu N , Feng X , Deng C . Optimal design of multiple-contaminant regeneration reuse water networks with process decomposition[J]. Chemical Engineering Journal, 2011, 173(1): 80-91.
8 Li A H , Yang Y Z , Liu Z Y . Analysis of water-using networks with multiple contaminants involving regeneration recycling[J]. Chemical Engineering Science, 2015, 134: 44-56.
9 Wang Y P , Smith R . Design of distributed effluent treatment systems[J]. Chemical Engineering Science, 1994, 49(18): 3127-3145.
10 李冠华, 王乐, 刘永忠 . 间歇用水系统中废水回用与集中再生处理的调度优化设计方法[J]. 化工学报, 2010, 61(2): 378-383.
Li G H , Wang L , Liu Y Z . Optimal design of batch water-using system with wastewater reuse and centralized treatment through scheduling[J]. CIESC Journal, 2010, 61(2): 378-383.
11 陈雁玲, 刘琳琳, 都健 . 考虑再生操作的间歇过程用水网络优化研究[J]. 化工进展, 2017, 36(4): 1173-1179.
Chen Y L , Liu L L , Du J . Optimization of water-using network in batch processes involving regeneration operation[J]. Chemical Industry and Engineering Progress, 2017, 36(4): 1173-1179.
12 都健, 洪水红, 陈理 . 多杂质体系间歇过程用水网络优化[J]. 化工进展, 2012, 31(1): 25-29.
Du J , Hong S H , Chen L . Optimization of water-using network in a batch processes system with multiple contaminants[J]. Chemical Industry and Engineering Progress, 2012, 31(1): 25-29.
13 李冠华, 刘永忠, 张进治 . 并联连续再生/再循环的多杂质间歇用水系统优化方法[J]. 化工学报, 2009, 60(1): 134-141.
Li G H , Liu Y Z , Zhang J Z . Optimization of batch water network with multiple contaminants through continuous regeneration/recycle parallel operation[J]. CIESC Journal, 2009, 60(1): 134-141.
14 Shelley M D , El-Halwagi M M . Component-less design of recovery and allocation systems: a functionality-based clustering approach[J]. Building & Environment, 2000, 24(9/10): 2081-2091.
15 Qin X , Gabriel F , Harell D , et al . Algebraic techniques for property integration via componentless design[J]. Ind. Eng. Chem. Res., 2004, 43(14): 3792-3798.
16 Foo D C Y , Kazantzi V , El-Halwagi M M , et al . Surplus diagram and cascade analysis technique for targeting property-based material reuse network[J]. Chemical Engineering Science, 2006, 61(8): 2626-2642.
17 Grooms D , Kazantzi V , El-Halwagi M M . Optimal synthesis and scheduling of hybrid dynamic/steady-state property integration networks[J]. Comput. Chem. Eng., 2005, 29(11/12): 2318-2325.
18 Chen C L , Lee J Y , Ng D K S , et al . A unified model of property integration for batch and continuous processes[J]. AIChE Journal, 2009, 56(7): 1845-1858.
19 Kheireddine H , Dadmohammadi Y , Deng C , et al . Optimization of direct recycle networks with the simultaneous consideration of property, mass, and thermal effects[J]. Ind. Eng. Chem. Res., 2011, 50(7): 3754-3762.
20 Jiménez-Gutiérrez A , Lona-Ramírez J , Ponce-Ortega J M , et al . An MINLP model for the simultaneous integration of energy, mass and properties in water networks[J]. Comput. Chem. Eng., 2014, 71: 52-66.
21 文增坤, 邓春, 冯霄,等 . 三角图示法合成性质集成水网络[J]. 华东理工大学学报(自然科学版), 2013, 39(2): 138-142.
Wen Z K , Deng C , Feng X , et al . Ternary diagram approach for synthesis of property integration water network [J]. Journal of East China University of Science and Technology (Natural Science Edition), 2013, 39(2): 138-142.
22 Ng D K S , Foo D C Y , Rabie A , et al . Simultaneous synthesis of property-based water reuse/recycle and interception networks for batch processes[J]. AIChE Journal, 2008, 54(10): 2624-2632.
23 Ponce-Ortega J M , Carolina H A , Mahmoud E H , et al . A property-based optimization of direct recycle networks and wastewater treatment processes[J]. AIChE Journal, 2009, 55(9): 2329-2344.
24 杨彩玲, 刘琳琳, 都健 . 考虑环境及处理单元流股回用的多性质用水网络集成[J]. 化工学报, 2015, 66(12): 4916-4921.
Yang C L , Liu L L , Du J . Water utilization networks integration with multiple-property based on environment and treated water reused[J]. CIESC Journal, 2015, 66(12): 4916-4921.
25 Ponce-Ortega J M , El-Halwagi M M , Jiménez-Gutiérrez A . Global optimization for the synthesis of property-based recycle and reuse networks including environmental constraints[J]. Computers & Chemical Engineering, 2010, 34(3): 318-330.
26 Nápoles-Rivera F , Ponce-Ortega J M , El-Halwagi M M , et al . Global optimization of mass and property integration networks with in-plant property interceptors[J]. Chemical Engineering Science, 2010, 65(15): 4363-4377.
27 Vázquez-Castillo J A , Ponce-Ortega J M , Segovia-Hernández J G , et al . A multi-objective approach for property-based synthesis of batch water networks[J]. Chemical Engineering & Processing, 2013, 65(7): 83-96.
28 Lira-Barragán L F , Ponce-Ortega J M , Nápoles-Rivera F , et al . Incorporating property-based water networks and surrounding watersheds in site selection of industrial facilities[J]. Ind. Eng. Chem. Res., 2012, 52(1): 91-97.
29 Sotelo-Pichardo C , Bamufleh H S , Ponce-Ortega J M , et al . Optimal synthesis of property-based water networks considering growing demand projections[J]. Ind. Eng. Chem. Res., 2014, 53(47): 18260-18272.
30 Rosenthal R E . GAMS-A User s Guide[M]. Washington DC: GAMS Development Corporation, 2012.
[1] Yanrao CHEN, Taoyan MAO, Cheng ZHENG. Microwave synthesis and properties of dioctadecyldihydroxyethyl ammonium bromide [J]. CIESC Journal, 2019, 70(S1): 226-234.
[2] Hao YANG, Eryan YAN. Simulation research of microwave heating efficiency for beamed energy thruster [J]. CIESC Journal, 2019, 70(S1): 93-98.
[3] Weifeng XU, Aipeng JIANG, Haokun WANG, Enhui JIANG, Qiang DING, Hanhan GAO. A grid reconstruction strategy based on pseudo Wigner-Ville analysis for dynamic optimization problem [J]. CIESC Journal, 2019, 70(S1): 158-167.
[4] Liangjie JIN, Peng BAI, Xianghai GUO. Energy-saving optimization of partial diabatic distillation with side streams [J]. CIESC Journal, 2019, 70(5): 1804-1814.
[5] Dong HUANG, Xionglin LUO. Judgement of process transition control strategies for large-range conditions change of chemical processes [J]. CIESC Journal, 2019, 70(5): 1848-1857.
[6] Qin WANG, Bingjian ZHANG, Chang HE, Qinglin CHEN. Solvent evaluation model base on energy consumption objective for aromatic extraction distillation units [J]. CIESC Journal, 2019, 70(5): 1815-1822.
[7] Peng LI, Zhonghe HAN, Xiaoqiang JIA, Zhongkai MEI, Xu HAN. Influence of dynamic turbine efficiency on performance of organic Rankine cycle system [J]. CIESC Journal, 2019, 70(4): 1532-1541.
[8] Aipeng JIANG, Quannan ZHANG, Haokun WANG, Qiang DING, Weifeng XU, Jian WANG. An improved dynamic real time optimization strategy for heat pump heating system [J]. CIESC Journal, 2019, 70(4): 1494-1504.
[9] Qian ZHANG, Xiangyang LIU, Wang CHEN, Heng WU, Pengying XIAO, Fangying JI, Chen LI, Haiming NIAN. Preparation of a novel phosphorus removal filler and optimization of phosphate removal adsorption bed process [J]. CIESC Journal, 2019, 70(3): 1099-1110.
[10] Bowen SHI, Yanyan YIN, Fei LIU. Optimal control strategies combined with PSO and control vector parameterization for batchwise chemical process [J]. CIESC Journal, 2019, 70(3): 979-986.
[11] Zhuang ZHANG, Chun DENG, Hailan SUN, Xiao FENG. Modeling and material balance analysis of desalination systems [J]. CIESC Journal, 2019, 70(2): 646-652.
[12] Qilei LIU, Kun FENG, Linlin LIU, Jian DU, Qingwei MENG, Lei ZHANG. Reaction solvent design method based on Dragon descriptors and modified decision tree-genetic algorithm [J]. CIESC Journal, 2019, 70(2): 533-540.
[13] Zhencheng YE, Huanlan ZHOU, Debao RAO. Hybrid modeling and optimization of acetylene hydrogenation process [J]. CIESC Journal, 2019, 70(2): 496-507.
[14] Changhao WU, Linlin LIU, Lei ZHANG, Jian DU. Inter-plant waste heat integration for industrial park using two medium fluids [J]. CIESC Journal, 2019, 70(2): 431-439.
[15] Shenhan WANG, Lunwei KANG, Bingjian ZHANG, Qinglin CHEN, Ming PAN, Chang HE. Energy minimization in hybrid desalination system of reverse osmosis and pressure retarded osmosis [J]. CIESC Journal, 2019, 70(2): 617-624.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LING Lixia, ZHANG Riguang, WANG Baojun, XIE Kechang. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] LEI Zhigang, LONG Aibin, JIA Meiru, LIU Xueyi. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] SU Haifeng, LIU Huaikun, WANG Fan, LÜXiaoyan, WEN Yanxuan. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] WANG Jianlin, XUE Yaoyu, YU Tao, ZHAO Liqiang. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] SUN Fubao, MAO Zhonggui, ZHANG Jianhua, ZHANG Hongjian, TANG Lei, ZHANG Chengming, ZHANG Jing, ZHAI Fangfang. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] Gao Ruichang, Song Baodong and Yuan Xiaojing( Chemical Engineering Research Center, Tianjin University, Tianjin 300072). LIQUID FLOW DISTRIBUTION IN GAS - LIQUID COUNTER - CONTACTING PACKED COLUMN[J]. , 1999, 50(1): 94 -100 .
[7] Su Yaxin, Luo Zhongyang and Cen Kefa( Institute of Thermal Power Engineering , Zhejiang University , Hangzhou 310027). A STUDY ON THE FINS OF HEAT EXCHANGERS FROM OPTIMIZATION OF ENTROPY GENERATION[J]. , 1999, 50(1): 118 -124 .
[8] Luo Xiaoping(Department of Industrial Equipment and Control Engineering , South China University of Technology, Guangzhou 510641)Deng Xianhe and Deng Songjiu( Research Institute of Chemical Engineering, South China University of Technology, Guangzhou 5106. RESEARCH ON FLOW RESISTANCE OF RING SUPPORT HEAT EXCHANGER WITH LONGITUDINAL FLUID FLOW ON SHELL SIDE[J]. , 1999, 50(1): 130 -135 .
[9] Jin Wenzheng , Gao Guangtu , Qu Yixin and Wang Wenchuan ( College of Chemical Engineering, Beijing Univercity of Chemical Technology, Beijing 100029). MONTE CARLO SIMULATION OF HENRY CONSTANT OF METHANE OR BENZENE IN INFINITE DILUTE AQUEOUS SOLUTIONS[J]. , 1999, 50(2): 174 -184 .
[10]

LI Qingzhao;ZHAO Changsui;CHEN Xiaoping;WU Weifang;LI Yingjie

.

Combustion of pulverized coal in O2/CO2 mixtures and its pore structure development

[J]. , 2008, 59(11): 2891 -2897 .