CIESC Journal ›› 2019, Vol. 70 ›› Issue (3): 791-800.doi: 10.11949/j.issn.0438-1157.20181067

• Reviews and monographs • Previous Articles     Next Articles

Applications and perspectives of NH3 separation and recovery with ionic liquids

Shaojuan ZENG1(),Dawei SHANG1,Min YU1,2,Hao CHEN3,Haifeng DONG1,Xiangping ZHANG1()   

  1. 1. Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
    2. School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, Henan, China
    3. Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450001, Henan, China
  • Received:2018-09-25 Revised:2018-12-07 Online:2019-03-05 Published:2018-12-07
  • Contact: Xiangping ZHANG E-mail:sjzeng@ipe.ac.cn;xpzhang@ipe.ac.cn

Abstract:

As one of the typical alkaline and poisonous pollutants, ammonia (NH3) is widely considered as a primary factor for the formation of fog and haze, which has caused a wide range of environmental problems and serious harm to human health. The traditional technologies for NH3 separation, like water scrubbing and acid scrubbing, have been applied in industries. However, some inherent drawbacks, such as severe corrosion, heavy pollution, high energy consumption, and hard to recover NH3 resources come with yet. Ionic liquids (ILs) provide a novel way for efficient and energy-saving separation of NH3 owing to their extremely low vapour pressure, good chemical/thermal stability and tuneable acidity and alkalinity. In this review, the recent advances on conventional ILs, functionalized ILs and IL-based solvents and materials for NH3 absorption/adsorption have been overviewed. The NH3 absorption capacities in different ILs were summarized and the effect of cations, anions and functional groups on NH3 absorption and the mechanisms have been discussed, and the research and development trend of this direction are discussed.

Key words: ionic liquids, NH3, absorption, separation, absorption mechanism

CLC Number: 

  • TQ 530.11

Fig.1

Structures of cations and anions of ILs for NH3 absorption"

Fig.2

Effect of anions on NH3 solubility[16] (copyright 2009 John Wiley and Sons)"

Fig.3

Interactions and molecular dynamics simulations between NH3 and [Emim][NTf2][16](copyright 2009 John Wiley and Sons)"

Fig.4

Predicted Henry’s law constants (MPa) of NH3 in 272 ILs at 25℃ calculated by COSMO-RS[31] (copyright 2011 Elservier)"

Fig.5

NH3 solubility and apparent diffusion coefficients in hydroxyl ILs at 20℃ and atmospheric pressure[33] (copyright 2012 Elservier)"

Fig.6

Optimized structures and interaction energies for [EOHmim]+-NH3 (A and B) and [Emim]+ -NH 3 (C and D) systems[38] (O, red; N, blue; H, white; C, gray) (copyright 2015 Royal Society of Chemistry)"

Fig.7

Possible mechanism of NH3 absorption by [Bim][NTf2][40] (copyright 2017 Royal Society of Chemistry)"

Fig.8

NH3 absorption in [Cnmim]2[Co(NCS)4] and [Cnmim][SCN] at 30℃ and 101 kPa[44] (copyright 2015 Royal Society of Chemistry)"

Table 1

NH3 capacities of different ionic liquids reported in literatures"

离子液体种类吸收温度/℃压力/kPaNH3吸收量参考文献
/(mol NH3?(mol absorbent)-1)/(g NH3?(g absorbent)-1)
[Emim][BF4]201400.2740.024[17]
[Emim][BF4]251100.1730.015[17]
[Bmim][BF4]252200.4650.035[17]
[Hmim][BF4]252200.5810.039[17]
[Omim][BF4]251200.3870.025[17]
[Bmim][PF6]251740.5380.032[19]
[Bmim][BF4]25.41010.1120.008[19]
[Emim][NTf2]26.41010.1220.005[19]
[Hmim][Cl]24.81010.2520.021[19]
[Emim][Ac]25.31010.3480.035[36]
[Emim][EtOSO3]24.61010.3420.025[36]
[Emim][SCN]251010.1880.019[36]
[DMEA][Ac]251630.9050.103[36]
[Bmim][BF4]201010.4490.034[31]
[EOHmim][BF4]201011.7030.135[31]
[Choline][NTf2]201011.8570.064[31]
[MTEOA][MeOSO3]201013.5450.219[33]
[MTEOA][MeOSO3]401011.3810.085[33]
[EtOHmim][DCA]201012.1250.190[33]
[EtOHmim][DCA]401000.8870.079[33]
[EtOHmim][NTf2]25105.50.9760.041[38]
[EtOHmim][PF6]25106.80.9800.062[38]
[EtOHmim][BF4]2598.90.8250.066[38]
[EtOHmim][SCN]2595.30.5380.050[38]
[EtOHmim][DCA]25108.50.6000.054[38]
[EtOHmim][NO3]25106.60.5220.047[38]
[Eim][NTf2]40105.122.730.123[39]
[Mim][NTf2]40102.712.680.128[39]
[Mmim][NTf2]4098.632.400.108[39]
[Bmmim][NTf2]30119.430.250.010[39]
[Bmmim][NTf2]40100.490.200.008[39]
[Bmmim][NTf2]60114.600.190.008[39]
[Bim][SCN]3098.822.180.202[39]
[Bim][SCN]4096.591.960.182[39]
[Bim][SCN]60102.561.560.145[39]
[Bmim][SCN]4082.920.150.013[39]
[Bmim][SCN]6079.870.090.008[39]
[Bim][NO3]30100.091.500.136[39]
[Bim][NO3]40141.531.720.156[39]
[Bim][NO3]60122.401.140.104[39]
[Bmim][DCA]30114.280.300.025[39]
[Bmim][DCA]40128.320.220.018[39]
[Bmim][DCA]60104.860.130.011[39]
[Bmmim][DCA]30115.380.250.020[39]
[Bmmim][DCA]40103.420.120.009[39]
[Bmmim][DCA]60126.480.140.011[39]
[Bim][NTf2]401012.690.113[40]
[Bmim][NTf2]401010.280.011[40]
[HOOC(CH2)3mim][NTf2]401011.540.059[40]
[Bmim][Zn2Cl5]50103.58.0250.305[42]
[Emim]2[Co(NCS)4]301015.990.198[44]
[Bmim]2[Co(NCS)4]301016.030.180[44]
[Hmim]2[Co(NCS)4]301016.090.166[44]
[Emim][SCN]301010.180.018[44]
[Bmim][SCN]301010.190.016[44]
[Hmim][SCN]301010.200.015[44]
[Bmim][MeSO3]/urea(1∶1)30123.60.015[47]
ChCl/Res/Gly (1∶3∶5)401010.130[48]

Fig.9

SEM images of carbon submicrocapsules (a), TEM images of carbon submicrocapsules (b) and [EtOHmim][BF4]-based ENILs (c) [49] (copyright 2016 Royal Society of Chemistry)"

1 WarnerJ X, DickersonR R, WeiZ, et al. Increased atmospheric ammonia over the world s major agricultural areas detected from space[J]. Geophys. Res. Lett., 2017, 44(6): 2875-2884.
2 ErismanJ W, BleekerA, GallowayJ, et al. Reduced nitrogen in ecology and the environment[J]. Environ. Pollut., 2007, 150(1): 140-149.
3 SuttonM A, ErismanJ W, DentenerF, et al. Ammonia in the environment: from ancient times to the present[J]. Environ. Pollut., 2008, 156(3): 583-604.
4 SchaferD, XiaJ Z, VogtM, et al. Experimental investigation of the solubility of ammonia in methanol[J].J. Chem. Eng. Data, 2007, 52(5): 1653-1659.
5 WangL, HuangX, YuY, et al. Eliminating ammonia emissions during rare earth separation through control of equilibrium acidity in a HEH(EHP)-Cl system[J]. Green Chem., 2013, 15(7): 1889-1894.
6 王芬, 周敏. 焦炉煤气中氨的回收[J]. 洁净煤技术, 2009, (4): 108-111.
WangF, ZhouM. Recovery of ammonia from coking product[J]. Clean Coal Technol., 2009,( 4): 108-111.
7 李强. 氨回收系统存在问题及改进措施[J]. 大氮肥, 2011, (6): 418-419.
LiQ. Problems in ammonia recovery system and improvement measures[J]. Large Scale Nitrogenous Fertilizer Industry, 2011, (6): 418-419.
8 林璐璐. 氨回收工艺方案的选择[J]. 广东化工, 2016, 43(334): 239-243.
LinL L. Process project selection for ammonia recovery[J]. Guangdong Chemical Industry, 2016, 43(334): 239-243.
9 LeiZ G, DaiC N, ChenB H. Gas solubility in ionic liquids[J]. Chem. Rev., 2014, 114(2): 1289-1326.
10 ZengS J, ZhangX P, BaiL, et al. Ionic liquid-based CO2 capture systems: structure, interaction and process[J]. Chem. Rev., 2017, 117(14): 9625-9673.
11 ZhangX P, ZhangX C, DongH F, et al. Carbon capture with ionic liquids: overview and progress[J]. Energ. Environ. Sci., 2012, 5(5): 6668-6681.
12 陈晏杰, 姚月华, 张香平, 等. 基于离子液体的合成氨驰放气中氨回收工艺模拟计算[J]. 过程工程学报, 2011, 11(4): 644-651.
ChenY J, YaoY H, ZhangX P, et al. Simulation and optimization of ammonia recovery with ionic liquid from purge gas in ammonia synthesis plant[J]. Chin. J. Process Eng., 2011, 11(4): 644-651.
13 ZengS J, GaoH, ZhangX, et al. Efficient and reversible capture of SO2 by pyridinium-based ionic liquids[J]. Chem. Eng. J., 2014, 251: 248-256.
14 HuangK, CaiD N, ChenY, et al. Thermodynamic validation of 1-alkyl-3-methylimidazolium carboxylates as task-specific ionic liquids for H2S absorption[J]. AIChE J., 2013, 59(6): 2227-2235.
15 LuoX Y, GuoY, DingF, et al. Significant improvements in CO2 capture by pyridine-containing anion-functionalized ionic liquids through multiple-site cooperative interactions[J]. Angew Chem. Int. Edit., 2014, 53(27): 7053-7057.
16 ShiW, MaginnE J. Molecular simulation of ammonia absorption in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EmimTf2N)[J]. AIChE J., 2009, 55(9): 2414-2421.
17 LiG H, ZhouQ, ZhangX P, et al. Solubilities of ammonia in basic imidazolium ionic liquids[J]. Fluid Phase Equilibr., 2010, 297(1): 34-39.
18 HuangW J, SunG M, ZhengD X, et al. Vapor-liquid equilibrium measurements of NH3 + H2O + ionic liquid (DmimCl, DmimBF4, and DmimDMP) systems[J].J. Chem. Eng. Data, 2013, 58(5): 1354-1360.
19 YokozekiA, ShiflettM B. Ammonia solubilities in room-temperature ionic liquids[J]. Ind. Eng. Chem. Res., 2007, 46(5): 1605-1610.
20 YokozekiA, ShiflettM B. Vapor-liquid equilibria of ammonia plus ionic liquid mixtures[J]. Appl. Energ., 2007, 84(12): 1258-1273.
21 AkiS, MelleinB R, SaurerE M, et al. High-pressure phase behavior of carbon dioxide with imidazolium-based ionic liquids[J]. J. Phys. Chem. B, 2004, 108(52): 20355-20365.
22 HuangX, MargulisC J, LiY, et al. Why is the partial molar volume of CO2 so small when dissolved in a room temperature ionic liquid? Structure and dynamics of CO2 dissolved in [Bmim][PF6][J]. J. Am. Chem. Soc., 2005, 127(50): 17842-17851.
23 YunusN M, MutalibM I A, ManZ, et al. Solubility of CO2 in pyridinium based ionic liquids[J]. Chem. Eng. J., 2012, 189: 94-100.
24 KazarianS G, BriscoeB J, WeltonT. Combining ionic liquids and supercritical fluids: in situ ATR-IR study of CO2 dissolved in two ionic liquids at high pressures[J]. Chem. Commun., 2000, 20: 2047-2048.
25 DongK, ZhangS J, WangD X, et al. Hydrogen bonds in imidazolium ionic liquids[J]. J. Phys. Chem. A, 2006, 110(31): 9775-9782.
26 CrowhurstL, MawdsleyP R, Perez-ArlandisJ M, et al. Solvent-solute interactions in ionic liquids[J]. Phys. Chem. Chem. Phys., 2003, 5(13): 2790-2794.
27 CadenaC, AnthonyJ L, ShahJ K, et al. Why is CO2 so soluble in imidazolium-based ionic liquids?[J]. J. Am. Chem. Soc., 2004, 126(16): 5300-5308.
28 AnthonyJ L, AndersonJ L, MaginnE J, et al. Anion effects on gas solubility in ionic liquids[J]. J. Phys. Chem. B, 2005, 109(13): 6366-6374.
29 BhargavaB L, BalasubramanianS. Probing anion-carbon dioxide interactions in room temperature ionic liquids: gas phase cluster calculations[J]. Chem. Phys. Lett., 2007, 444(4/5/6): 242-246.
30 SekiT, GrunwaldtJ D, BaikerA. In situ attenuated total reflection infrared spectroscopy of imidazolium-based room-temperature ionic liquids under “supercritical” CO2[J]. J. Phys. Chem. B, 2009, 113(1): 114-122.
31 PalomarJ, Gonzalez-MiquelM, BediaJ, et al. Task-specific ionic liquids for efficient ammonia absorption[J]. Sep. Purif. Technol., 2011, 82: 43-52.
32 RuizE, FerroV R, de RivaJ, et al. Evaluation of ionic liquids as absorbents for ammonia absorption refrigeration cycles using COSMO-based process simulations[J]. Appl. Energ., 2014, 123: 281-291.
33 BediaJ, PalomarJ, Gonzalez-MiquelM, et al. Screening ionic liquids as suitable ammonia absorbents on the basis of thermodynamic and kinetic analysis[J]. Sep. Purif. Technol., 2012, 95: 188-195.
34 ZhangX, DongH F, HuangY, et al. Experimental study on gas holdup and bubble behavior in carbon capture systems with ionic liquid[J]. Chem. Eng. J., 2012, 209: 607-615.
35 HolbreyJ D, ReichertW M, SwatloskiR P, et al. Efficient, halide free synthesis of new, low cost ionic liquids: 1,3-dialkylimidazolium salts containing methyl- and ethyl-sulfate anions[J]. Green Chem., 2002, 4(5): 407-413.
36 YokozekiA, ShiflettM B. Vapor-liquid equilibria of ammonia + ionic liquid mixtures[J]. Appl. Energ., 2007, 84(12): 1258-1273.
37 IarikovD D, HacarliogluP, OyamaS T. Supported room temperature ionic liquid membranes for CO2/CH4 separation[J]. Chem. Eng. J., 2011, 166(1): 401-406.
38 LiZ J, ZhangX P, DongH F, et al. Efficient absorption of ammonia with hydroxyl-functionalized ionic liquids[J]. RSC Adv., 2015, 5(99): 81362-81370.
39 ShangD W, BaiL, ZengS J, et al. Enhanced NH3 capture by imidazolium-based protic ionic liquids with different anions and cation substituents[J]. J. Chem. Technol. Biotechnol., 2018, 93(5): 1228-1236.
40 ShangD W, ZhangX P, ZengS J, et al. Protic ionic liquid BimNTf2 with strong hydrogen bond donating ability for highly efficient ammonia absorption[J]. Green Chem., 2017, 19(4): 937-945.
41 SherwoodT K. Solubilities of sulfur dioxide and ammonia in water [J]. Industrial and Engineering Chemistry, 1925, 17: 745-747.
42 ChenW, LiangS Q, GuoY X, et al. Investigation on vapor-liquid equilibria for binary systems of metal ion-containing ionic liquid bmim Zn2Cl5/NH3 by experiment and modified UNIFAC model[J]. Fluid Phase Equilibr., 2013, 360: 1-6.
43 KohlerF, PoppS, KleferH, et al. Supported ionic liquid phase (SILP) materials for removal of hazardous gas compounds - efficient and irreversible NH3 adsorption[J]. Green Chem., 2014, 16(7): 3560-3568.
44 ZengS J, LiuL, ShangD W, et al. Efficient and reversible absorption of ammonia by cobalt ionic liquids through Lewis acid-base and cooperative hydrogen bond interactions[J]. Green Chem., 2018, 20(9): 2075-2083.
45 WangJ L, ZengS J, HuoF, et al. Metal chloride anion-based ionic liquids for efficient separation of NH3[J]. J. Clean Prod., 2019, 206: 661-669.
46 CaoX Z, SongT Y, WangX Q. Inorganic Chemistry[M]. 2nd ed. Beijing: Higher Education Press, 1994: 898-899.
47 AkhmetshinaA I, PetukhovA N, MecherguiA, et al. Evaluation of methanesulfonate-based deep eutectic solvent for ammonia sorption[J]. J. Chem. Eng. Data, 2018, 63(6): 1896-1904.
48 LiY H, AliM C, YangQ W, et al. Hybrid deep eutectic solvents with flexible hydrogen-bonded supramolecular networks for highly efficient uptake of NH3[J]. ChemSusChem, 2017, 10(17): 3368-3377.
49 LemusJ, BediaJ, MoyaC, et al. Ammonia capture from the gas phase by encapsulated ionic liquids (ENILs)[J]. RSC Adv., 2016, 6(66): 61650-61660.
50 PalomarJ, LemusJ, Alonso-MoralesN, et al. Encapsulated ionic liquids (ENILs): from continuous to discrete liquid phase[J]. Chem. Comm., 2012, 48(80): 10046-10048.
51 RuckartK N, ZhangY C, ReichertW M, et al. Sorption of ammonia in mesoporous-silica ionic liquid composites[J]. Ind. Eng. Chem. Res., 2016, 55(47): 12191-12204.
[1] Zhaowen ZENG, Cheng ZHENG, Taoyan MAO, Yuan WEI, Runhui XIAO, Siyu PENG. Progress in research and application of microwave in chemical process [J]. CIESC Journal, 2019, 70(S1): 1-14.
[2] Zhe LI, Wenlong WANG, Meng ZHANG, Jing SUN, Yanpeng MAO, Xiqiang ZHAO, Zhanlong SONG. Low frequency electromagnetic parameters and absorbing heat generation properties of carbon nanotubes [J]. CIESC Journal, 2019, 70(S1): 28-34.
[3] Jihai DUAN, Shuaibiao HUANG, Chang GAO, Aqiang CHEN, Qingshan HUANG. Influence of slit structure in hydrocyclone conical section on solid-liquid separation performance [J]. CIESC Journal, 2019, 70(5): 1823-1831.
[4] Yong JIA, Jin JIANG, Ren ZHAO, Weilong RONG, Liguo YIN, Mingyan GU, Hongming LONG. Investigation of mass transfer coefficient of absorption of sulfur dioxide by ammonia [J]. CIESC Journal, 2019, 70(4): 1367-1374.
[5] Lei WANG, Guiying FANG, Qingyuan YANG. Performance of metal-organic frameworks for CO2 capture from large-scale computational screening [J]. CIESC Journal, 2019, 70(3): 1135-1143.
[6] Xiaofang LIU, Haiyan GUO, Shengnan ZHANG, Liang HUANG. Influencing factors of denitrification of glycans and transformation characteristics of internal carbon sources [J]. CIESC Journal, 2019, 70(3): 1127-1134.
[7] Tao TIAN, Bing LIU, Meisheng SHI, Yaxiong AN, Jun MA, Yanjun ZHANG, Xinxi XU, Donghui ZHANG. Experiment and simulation of PSA process for small oxygen generator with two adsorption beds [J]. CIESC Journal, 2019, 70(3): 969-978.
[8] Song HU, Jinlong LI, Mujin LI, Weisheng YANG. Extractive refining process for production of propylene oxide with high purification [J]. CIESC Journal, 2019, 70(2): 670-677.
[9] Zizong WANG, Hongqian LIU, Jiming WANG. Research and optimization of separation technology of methanol to propylene [J]. CIESC Journal, 2019, 70(1): 136-145.
[10] Yuanmo WU, Shouyu ZHANG, Hua ZHANG, Chen MU, Hao LI, Xiaobing SONG, Junfu LYU. Relationship between pore structure and moisture reabsorption of lignite dewatered by high temperature drying process [J]. CIESC Journal, 2019, 70(1): 199-206.
[11] Cailin WANG, Shuaiwei GU, Yuxing LI, Qihui HU, Lin TENG, Jinghan WANG, Hongtao MA, Datong ZHANG. Experimental study on foaming characteristics of CO2-crude oil mixture [J]. CIESC Journal, 2019, 70(1): 251-260.
[12] SUN Yanjun, DI Gaolei, XIA Juan, WANG Xiaopo, JIN Liwen. Thermodynamic analysis of absorption refrigeration cycles using ionic liquids as absorbents [J]. CIESC Journal, 2018, 69(S2): 38-44.
[13] WANG Qin, LIU Yilun, LU Wei, WANG Shikuan, HE Wei, HAO Nan, ZHANG Shaozhi. Experiment on transport performance of bubble pumps with R134a/R23-DMF solutions [J]. CIESC Journal, 2018, 69(S2): 116-122.
[14] HE Ting, LIN Wensheng. Nitrogen expansion liquefaction and separation process for natural gas with high ethane content [J]. CIESC Journal, 2018, 69(S2): 226-231.
[15] LIU Yang, HAN Jitian, YOU Huailiang. Performance of combined cooling, heating and power system based on SOFC/GT/TCO2 integrated power cycle and LiBr-water absorption chiller [J]. CIESC Journal, 2018, 69(S2): 341-349.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LING Lixia, ZHANG Riguang, WANG Baojun, XIE Kechang. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] LEI Zhigang, LONG Aibin, JIA Meiru, LIU Xueyi. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] SU Haifeng, LIU Huaikun, WANG Fan, LÜXiaoyan, WEN Yanxuan. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] WANG Jianlin, XUE Yaoyu, YU Tao, ZHAO Liqiang. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] SUN Fubao, MAO Zhonggui, ZHANG Jianhua, ZHANG Hongjian, TANG Lei, ZHANG Chengming, ZHANG Jing, ZHAI Fangfang. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] Gao Ruichang, Song Baodong and Yuan Xiaojing( Chemical Engineering Research Center, Tianjin University, Tianjin 300072). LIQUID FLOW DISTRIBUTION IN GAS - LIQUID COUNTER - CONTACTING PACKED COLUMN[J]. , 1999, 50(1): 94 -100 .
[7] Su Yaxin, Luo Zhongyang and Cen Kefa( Institute of Thermal Power Engineering , Zhejiang University , Hangzhou 310027). A STUDY ON THE FINS OF HEAT EXCHANGERS FROM OPTIMIZATION OF ENTROPY GENERATION[J]. , 1999, 50(1): 118 -124 .
[8] Luo Xiaoping(Department of Industrial Equipment and Control Engineering , South China University of Technology, Guangzhou 510641)Deng Xianhe and Deng Songjiu( Research Institute of Chemical Engineering, South China University of Technology, Guangzhou 5106. RESEARCH ON FLOW RESISTANCE OF RING SUPPORT HEAT EXCHANGER WITH LONGITUDINAL FLUID FLOW ON SHELL SIDE[J]. , 1999, 50(1): 130 -135 .
[9] Jin Wenzheng , Gao Guangtu , Qu Yixin and Wang Wenchuan ( College of Chemical Engineering, Beijing Univercity of Chemical Technology, Beijing 100029). MONTE CARLO SIMULATION OF HENRY CONSTANT OF METHANE OR BENZENE IN INFINITE DILUTE AQUEOUS SOLUTIONS[J]. , 1999, 50(2): 174 -184 .
[10]

LI Qingzhao;ZHAO Changsui;CHEN Xiaoping;WU Weifang;LI Yingjie

.

Combustion of pulverized coal in O2/CO2 mixtures and its pore structure development

[J]. , 2008, 59(11): 2891 -2897 .