CIESC Journal ›› 2019, Vol. 70 ›› Issue (2): 481-486.doi: 10.11949/j.issn.0438-1157.20181050
• Process system engineering • Previous Articles Next Articles
Shan DOU1(),Guangyu ZHANG2,Zhihua XIONG1(
)
CLC Number:
1 | 周大镯, 刘月芬, 马文秀. 时间序列异常检测[J]. 计算机工程与应用, 2008, 44(35): 145-147. |
ZhouD Z, LiuY F, MaW X. Effective time series outlier detection algorithm based on segmentation[J]. Computer Engineering and Applications, 2008, 44(35): 145-147. | |
2 | HawkinsD M. Identification of Outliers[M]. London: Chapman and Hall, 1980: 25. |
3 | BillorN, HadiA S, VellemanP F. BACON: blocked adaptive computationally efficient outlier nominators[J]. Computational Statistics & Data Analysis, 2000, 34(3): 279-298. |
4 | KnorrE M, NgR T. A unified notion of outliers: properties and computation[C]//KDD. 1997: 219-222. |
5 | 李钢, 周东华. 基于SPM的多变量连续过程在线故障预测方法[J]. 化工学报, 2008, 59(7): 1829-1833. |
LiG, ZhouD H. SPM-based online fault prediction approach for multivariate continuous processes[J]. Journal of Chemical Industry and Engineering(China), 2008, 59(7): 1829-1833. | |
6 | 张浩, 刘振娟, 李宏光, 等. 基于关联变量时滞分析卷积神经网络的生产过程时间序列预测方法[J]. 化工学报, 2017, 68(9): 3501-3510. |
ZhangH, LiuZ J, LiH G, et al. Process time series prediction based on application of correlated process variables to CNN time delayed analyses[J]. CIESC Journal, 2017, 68(9): 3501-3510. | |
7 | PageE S. Continuous inspection schemes[J]. Biometrika, 1954, 41(1/2): 100-115. |
8 | BassevilleM, NikiforovI V. Detection of Abrupt Changes: Theory and Application[M]. Englewood Cliffs: Prentice Hall, 1993: 30. |
9 | MaJ, PerkinsS. Time-series novelty detection using one-class support vector machines[C]//Neural Networks, 2003. Proceedings of the International Joint Conference on. IEEE, 2003: 1741-1745. |
10 | 王少军. 时间序列预测的可重构计算研究[D]. 哈尔滨:哈尔滨工业大学, 2012: 35. |
WangS J. Research on reconfigurable computing for time series forecasting[D]. Harbin: Harbin Institute of Technology, 2012: 35. | |
11 | HochreiterS, SchmidhuberJ. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. |
12 | SutskeverI, VinyalsO, LeQ V. Sequence to sequence learning with neural networks[C]//Advances in Neural Information Processing Systems, 2014: 3104-3112. |
13 | MiwaM, BansalM. End-to-end relation extraction using LSTMs on sequences and tree structures[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2016: 1105-1116. |
14 | ChoiY, BreckE, CardieC. Joint extraction of entities and relations for opinion recognition[C]//Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2006: 431-439. |
15 | GravesA, SchmidhuberJ. Offline handwriting recognition with multidimensional recurrent neural networks[C]//Advances in Neural Information Processing Systems, 2009: 545-552. |
16 | MessinaR, LouradourJ. Segmentation-free handwritten Chinese text recognition with LSTM-RNN[C]//Document Analysis and Recognition (ICDAR), 2015 13th International Conference on. IEEE, 2015: 171-175. |
17 | HuangZ, XuW, YuK. Bidirectional LSTM-CRF models for sequence tagging[J]. arXivpreprint arXiv: 1508.01991, 2015. |
18 | MaX, HovyE. End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2016: 1064-1074. |
19 | ChoK, van MerrienboerB, BahdanauD, et al. On the properties of neural machine translation: encoder–decoder approaches[C]//Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, 2014: 103-111. |
20 | ChoK, VanM B, GulcehreC, et al. Learning phrase representations using RNN encoder–decoder for statistical machine translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014: 1724-1734. |
21 | CybenkoG. Approximation by superpositions of a sigmoidal function[J]. Mathematics of Control, Signals and Systems, 1989, 2(4): 303-314. |
22 | MaasA L, HannunA Y, NgA Y. Rectifier nonlinearities improve neural network acoustic models[J]. Proc. Icml., 2013, 30(1): 3. |
23 | GravesA. Long short-term memory[M]//Supervised Sequence Labelling with Recurrent Neural Networks. Heidelberg, Berlin: Springer, 2012: 37-45. |
24 | ChungJ, GulcehreC, ChoK H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. arXivpreprint arXiv: 1412.3555, 2014. |
25 | BockR D, AitkinM. Marginal maximum likelihood estimation of item parameters: application of an EM algorithm[J]. Psychometrika, 1981, 46(4): 443-459. |
26 | MalhotraP, VigL, ShroffG, et al. Long short term memory networks for anomaly detection in time series[C]//23rd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2015. Bruges, Belgium, 2015: 89. |
27 | GoutteC, GaussierE. A probabilistic interpretation of precision, recall and F-score, with implication for evaluation[C]//European Conference on Information Retrieval. Heidelberg, Berlin: Springer, 2005: 345-359. |
28 | LeQ V, NgiamJ, CoatesA, et al. On optimization methods for deep learning[C]//Proceedings of the 28th International Conference on International Conference on Machine Learning. Omnipress, 2011: 265-272. |
29 | KingmaD P, BaJ. Adam: a method for stochastic optimization[J]. arXivpreprint arXiv: 1412.6980, 2014. |
30 | ConnorJ T, MartinR D, AtlasL E. Recurrent neural networks and robust time series prediction[J]. IEEE Transactions on Neural Networks, 1994, 5(2): 240-254. |
|