CIESC Journal ›› 2019, Vol. 70 ›› Issue (2): 533-540.doi: 10.11949/j.issn.0438-1157.20181049

• Process system engineering • Previous Articles     Next Articles

Reaction solvent design method based on Dragon descriptors and modified decision tree-genetic algorithm

Qilei LIU1(),Kun FENG1,Linlin LIU1,Jian DU1,Qingwei MENG2,Lei ZHANG1()   

  1. 1. Institute of Process Systems Engineering,School of Chemical Engineering, Dalian University of Technology, Dalian 116024,Liaoning,China
    2. State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology,Dalian University of Technology, Dalian 116024, Liaoning, China
  • Received:2018-10-16 Revised:2018-11-30 Online:2019-02-05 Published:2018-10-29
  • Contact: Lei ZHANG E-mail:379785365@qq.com;keleiz@dlut.edu.cn

Abstract:

Reaction solvents have been widely used in liquid-liquid homogeneous organic synthesis. They have significant impacts on reaction rates and selectivity, which have contributed to the development of new process route for green synthesis. A computer-aided molecular design (CAMD) reaction solvent design method based on Dragon descriptor and SMILES (simplified molecular-input line-entry system) coding is proposed. First, a reaction kinetic model was constructed to make quantitative predictions for reaction rate constants k by the decision tree-genetic algorithm (DT-GA). Then, through SMILES code techniques and Dragon software, computer-aided molecular design (CAMD) method was integrated with the DT-GA to establish a mixed integer nonlinear programming (MINLP) model consists of objective functions and constraint equations. Afterwards, a decomposition-based algorithm was employed to solve this MINLP optimization problem, which achieves the objective of reaction solvent design. Finally, an example of Diels-Alder reaction was adapted to demonstrate the feasibility and effectiveness of this method.

Key words: systems engineering, solvents, algorithm, optimization, reaction

CLC Number: 

  • TQ 413.2

Fig.1

Principle of DT-GA method"

Fig.2

CAMD design method integrated with DT-GA"

Table 1

GC method and solvent property constraints"

溶剂性质 基团贡献法公式 上/下限
T m/K T m = 144.0977 l n ( n i G n i T m , i ) T m 303.15
T b/K T b = 244.7889 l n ( n i G n i T b , i ) T b 303.15
S/MPa1/2 S = 20.7339 + n i G n i S i 18.05 S 22.73
LC50 FM/(mol·L-1) - l n L C 50 F M = n i G n i L C 50 , i - l n L C 50 F M 3.30

Fig.3

Principle of decomposition-based algorithm"

Fig.4

Chemical equation of Diels-Alder reaction between cyclopentadiene and 2-propenal"

Fig.5

Determination coefficients R 2 of 8 types descriptors"

Table 2

Regression data of reaction kinetic model"

溶剂 lgk GATS5p ATS3e ATSC3s ATS3v ATSC1s ATSC2p
乙酸 ?2.491 0.000 2.370 45.125 0.948 15.896 0.498
乙醇 ?2.964 0.000 2.548 13.642 0.868 5.025 0.554
1-丙醇 ?3.186 0.000 3.050 11.757 1.505 3.910 1.145
1-丁醇 ?3.219 0.211 3.382 9.000 1.922 3.000 1.723
甲醇 ?3.257 0.000 1.298 3.000 0.189 4.000 0.113
三氯甲烷 ?3.383 0.000 0.000 0.000 0.000 8.747 0.564
1,2-二氯乙烷 ?3.602 0.000 2.390 16.111 1.286 3.396 1.608
二甲基甲酰胺 ?3.640 0.000 2.824 3.667 1.811 1.917 0.879
二氯甲烷 ?3.699 0.000 0.000 0.000 0.000 5.254 1.101
甲苯 ?3.745 0.625 3.277 6.296 2.400 3.580 2.364
乙腈 ?3.757 0.000 1.453 14.062 0.469 1.937 0.460
1,4-二氧六环 ?3.827 0.000 3.381 14.000 2.039 0.000 1.528
四氯化碳 ?3.873 0.000 0.000 0.000 0.000 5.239 0.014
丙酮 ?3.983 0.000 2.650 27.387 1.311 1.773 1.001
乙酸乙酯 ?4.036 0.954 3.126 27.500 1.849 3.166 1.283

Fig.6

Predicted lgk and experimental lgk "

Table 3

Results of reaction solvents design"

Predicted lgk SMILES 分子结构
?2.269 CCC(Cl)CC(O)COC(C) O
?2.350 CC(CCCC(C)O)C(O)C[N +](O)[O ?]
?2.413 CCCC(C(O)CC)C(Cl)C(C) O
?2.422 CCCCC(C(C)O)C(O)C[N +](O)[O ?]
1 Struebing H , Ganase Z , Karamertzanis P G , et al . Computer-aided molecular design of solvents for accelerated reaction kinetics[J]. Nature Chemistry, 2013, 5(11): 952-957.
2 Otto R , Brox J , Trippel S , et al . Single solvent molecules can affect the dynamics of substitution reactions[J]. Nature Chemistry, 2012, 4(7): 534-538.
3 Jiménez-González C , Poechlauer P , Broxterman Q B , et al . Key green engineering research areas for sustainable manufacturing: a perspective from pharmaceutical and fine chemicals manufacturers[J]. Organic Process Research & Development, 2011, 15(4): 900-911.
4 Zhang L , Babi D K , Gani R . New vistas in chemical product and process design[J]. Annu. Rev. Chem. Biomol. Eng., 2016, 7(1): 557-582.
5 Brignole E A , Bottini S , Gani R . A strategy for the design and selection of solvents for separation processes[J]. Fluid Phase Equilibria, 1986, 29 (29): 125-132.
6 Gani R , Nielsen B , Fredenslund A . A group contribution approach to computer‐aided molecular design[J]. AIChE J., 1991, 37 (9): 1318-1332.
7 Harper P M , Gani R . A multi-step and multi-level approach for computer aided molecular design[J]. Computers & Chemical Engineering, 2001, 24(2): 677-683.
8 Zhang L , Cignitti S , Gani R . Generic mathematical programming formulation and solution for computer-aided molecular design[J]. Computers & Chemical Engineering, 2015, 78: 79-84.
9 Giovanoglou A , Barlatier J , Adjiman C S , et al . Optimal solvent design for batch separation based on economic performance[J]. AIChE J., 2003, 49(12): 3095-3109.
10 Achenie L E K . Computer Aided Molecular Design: Theory and Practice[M]//Gani R, Venkatasubramanian V. Netherlands: Elsevier, Academic Press, 2003: 9-10.
11 Gani R , Gómez P A , Folić M , et al . Solvents in organic synthesis: replacement and multi-step reaction systems[J]. Computers & Chemical Engineering, 2008, 32(10): 2420-2444.
12 Folić M , Adjiman C S , Pistikopoulos E N . Design of solvents for optimal reaction rate constants[J]. AIChE J., 2007, 53(5): 1240-1256.
13 Folić M , Adjiman C S , Pistikopoulos E N . Computer-aided solvent design for reactions: maximizing product formation[J]. Industrial & Engineering Chemistry Research, 2008, 47(15): 5190-5202.
14 Zhou T , Lyu Z , Qi Z , et al . Robust design of optimal solvents for chemical reactions—a combined experimental and computational strategy[J]. Chemical Engineering Science, 2015, 137(2): 613-625.
15 Datta S , Dev V A , Eden M R . Hybrid genetic algorithm-decision tree approach for rate constant prediction using structures of reactants and solvent for Diels-Alder reaction[J]. Computers & Chemical Engineering, 2017, 106(2): 690-698.
16 Liu Q , Zhang L , Liu L , et al . GC-COSMO based reaction solvent design with new kinetic model using CAMD[C]//Eden M R, Ierapetritou M G, Towler G. 13th International Symposium On Process Systems Engineering. Netherlands: Elsevier, Academic Press, 2018: 235-240.
17 Gani R , Jiménez-González C , Constable D J C . Method for selection of solvents for promotion of organic reactions[J]. Computers & Chemical Engineering, 2005, 29(7): 1661-1676.
18 Carlson R . Design and Optimization in Organic Synthesis[M]//Carlson J E. 2nd ed. Netherlands: Elsevier, Academic Press, 2005: 232-240.
19 Kamlet M J , Taft R W . The solvatochromic comparison method(1): The β-scale of solvent hydrogen-bond acceptor(HBA) basicities[J]. J. Am. Chem. Soc., 1976, 98(2): 377-383.
20 Taft R W , Abboud J L M , Kamlet M J , et al . Linear solvation energy relations[J]. Journal of Solution Chemistry, 1985, 14(3): 153-186.
21 Mauri A , Consonni V , Pavan M , et al . Dragon software: an easy approach to molecular descriptor calculations[J]. Match, 2006, 56(2): 237-248.
22 Odele O , Macchietto S . Computer aided molecular design: a novel method for optimal solvent selection[J]. Fluid Phase Equilibria, 1993, 82(93): 47-54.
23 Fredenslund A . Vapor-liquid Equilibria Using Unifac. A Group-Contribution Method[M]//Gmehling J, Rasmussen P. Netherlands: Elsevier, Academic Press, 1977: 156-160.
24 Gmehling J , Li J , Schiller M . A modified UNIFAC model(2): Present parameter matrix and results for different thermodynamic properties[J]. Industrial & Engineering Chemistry Research, 1993, 32(1): 178-193.
25 Wittig R , Lohmann J , Gmehling J . Vapor-liquid equilibria by UNIFAC group contribution(6): Revision and extension[J]. Industrial & Engineering Chemistry Research, 2003, 42(1): 183-188.
26 Hukkerikar A S . Development of pure component property models for chemical product-process design and analysis[D]. Denmark: Technical University of Denmark, 2013.
27 Karunanithi A T , Achenie L E K , Gani R . A new decomposition-based computer-aided molecular/mixture design methodology for the design of optimal solvents and solvent mixtures[J]. Industrial & Engineering Chemistry Research, 2005, 44(13): 4785-4797.
28 Cativiela C , García J I , Mayoral J A , et al . Solvent effects on endo/exo- and regio-selectivities of Diels-Alder reactions of carbonyl-containing dienophiles[J]. Cheminform, 1994, 25(32): 847-851.
29 Cativiela C , García J I , Mayoral J A , et al . Modelling of solvent effects on the Diels-Alder reaction[J]. Chemical Society Reviews, 1996, 25(3): 209-218.
30 Nobuoka K , Kitaoka S , Yanagisako A , et al . Stereoselectivity of the Diels-Alder reaction in ionic liquids with cyano moieties: effect of the charge delocalization of anions on the relation of solvent-solvent and solute–solvent interactions[J]. RSC Advances, 2013, 3(42): 19632-19638.
[1] Zhaowen ZENG, Cheng ZHENG, Taoyan MAO, Yuan WEI, Runhui XIAO, Siyu PENG. Progress in research and application of microwave in chemical process [J]. CIESC Journal, 2019, 70(S1): 1-14.
[2] Hao YANG, Eryan YAN. Simulation research of microwave heating efficiency for beamed energy thruster [J]. CIESC Journal, 2019, 70(S1): 93-98.
[3] Weifeng XU, Aipeng JIANG, Haokun WANG, Enhui JIANG, Qiang DING, Hanhan GAO. A grid reconstruction strategy based on pseudo Wigner-Ville analysis for dynamic optimization problem [J]. CIESC Journal, 2019, 70(S1): 158-167.
[4] Xingpeng LIU, Dandan YAN. Spectrum changes of electromagnetic pluses in chemical reactions [J]. CIESC Journal, 2019, 70(S1): 177-181.
[5] Yanrao CHEN, Taoyan MAO, Cheng ZHENG. Microwave synthesis and properties of dioctadecyldihydroxyethyl ammonium bromide [J]. CIESC Journal, 2019, 70(S1): 226-234.
[6] Zhixin SHANG, Xianglan ZHANG. DFT study on effects of hydrolysis degrees of 3-mercaptopropyltriethoxysilane on grafting mechanisms of nano-silica [J]. CIESC Journal, 2019, 70(5): 1663-1673.
[7] Jingchun YAN, Laihong SHEN, Shouxi JIANG, Huijun GE. Chemical looping combustion of high-sodium coal and gasification kinetics of coal char [J]. CIESC Journal, 2019, 70(5): 1913-1922.
[8] Chao PENG, Yuyuan WANG, Chang ai DENG, Fangfang ZHAO, Kuiyi YOU. Preparation of hydroxylamine sulfate by continuous reaction-extraction coupling technology [J]. CIESC Journal, 2019, 70(5): 1842-1847.
[9] Peng ZHANG, Yulu WANG, Wenjie DING, Wenlin ZHAO. Synthesis of new sulfhydryl flocculant PAM-GSH and its performance in removing Mn (Ⅱ) [J]. CIESC Journal, 2019, 70(5): 1932-1941.
[10] Liangjie JIN, Peng BAI, Xianghai GUO. Energy-saving optimization of partial diabatic distillation with side streams [J]. CIESC Journal, 2019, 70(5): 1804-1814.
[11] Dong HUANG, Xionglin LUO. Judgement of process transition control strategies for large-range conditions change of chemical processes [J]. CIESC Journal, 2019, 70(5): 1848-1857.
[12] Qin WANG, Bingjian ZHANG, Chang HE, Qinglin CHEN. Solvent evaluation model base on energy consumption objective for aromatic extraction distillation units [J]. CIESC Journal, 2019, 70(5): 1815-1822.
[13] Fei LI, Cuili YANG, Wenjing LI, Junfei QIAO. Optimal control of wastewater treatment process using NSGAII algorithm based on multi-objective uniform distribution [J]. CIESC Journal, 2019, 70(5): 1868-1878.
[14] Shuai REN, Xing LI, Jing ZHANG, Xiaohan WANG, Daiqing ZHAO. Investigation on combustion characteristics of ethanol and dimethyl ether micro-jet flames [J]. CIESC Journal, 2019, 70(5): 1973-1980.
[15] Yinhu KANG, Pengyuan ZHANG, Congcong LIU, Jiangze MA, Xiaofeng LU. Extinction mechanism of ethylene opposed-flow diffusion flame using chemical explosive mode analysis method [J]. CIESC Journal, 2019, 70(4): 1644-1651.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LING Lixia, ZHANG Riguang, WANG Baojun, XIE Kechang. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] LEI Zhigang, LONG Aibin, JIA Meiru, LIU Xueyi. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] SU Haifeng, LIU Huaikun, WANG Fan, LÜXiaoyan, WEN Yanxuan. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] WANG Jianlin, XUE Yaoyu, YU Tao, ZHAO Liqiang. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] SUN Fubao, MAO Zhonggui, ZHANG Jianhua, ZHANG Hongjian, TANG Lei, ZHANG Chengming, ZHANG Jing, ZHAI Fangfang. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] Gao Ruichang, Song Baodong and Yuan Xiaojing( Chemical Engineering Research Center, Tianjin University, Tianjin 300072). LIQUID FLOW DISTRIBUTION IN GAS - LIQUID COUNTER - CONTACTING PACKED COLUMN[J]. , 1999, 50(1): 94 -100 .
[7] Su Yaxin, Luo Zhongyang and Cen Kefa( Institute of Thermal Power Engineering , Zhejiang University , Hangzhou 310027). A STUDY ON THE FINS OF HEAT EXCHANGERS FROM OPTIMIZATION OF ENTROPY GENERATION[J]. , 1999, 50(1): 118 -124 .
[8] Luo Xiaoping(Department of Industrial Equipment and Control Engineering , South China University of Technology, Guangzhou 510641)Deng Xianhe and Deng Songjiu( Research Institute of Chemical Engineering, South China University of Technology, Guangzhou 5106. RESEARCH ON FLOW RESISTANCE OF RING SUPPORT HEAT EXCHANGER WITH LONGITUDINAL FLUID FLOW ON SHELL SIDE[J]. , 1999, 50(1): 130 -135 .
[9] Jin Wenzheng , Gao Guangtu , Qu Yixin and Wang Wenchuan ( College of Chemical Engineering, Beijing Univercity of Chemical Technology, Beijing 100029). MONTE CARLO SIMULATION OF HENRY CONSTANT OF METHANE OR BENZENE IN INFINITE DILUTE AQUEOUS SOLUTIONS[J]. , 1999, 50(2): 174 -184 .
[10]

LI Qingzhao;ZHAO Changsui;CHEN Xiaoping;WU Weifang;LI Yingjie

.

Combustion of pulverized coal in O2/CO2 mixtures and its pore structure development

[J]. , 2008, 59(11): 2891 -2897 .