CIESC Journal ›› 2019, Vol. 70 ›› Issue (2): 678-686.doi: 10.11949/j.issn.0438-1157.20181035
Previous Articles Next Articles
CLC Number:
1 | 钱锋, 杜文莉, 钟伟民, 等. 石油和化工行业智能优化制造若干问题及挑战[J]. 自动化学报, 2017, 43(6): 893-901. |
QianF, DuW L, ZhongW M, et al. Problems and challenges of smart optimization manufacturing in petrochemical industries[J]. Acta Automatica Sinica, 2017, 43(6): 893-901. | |
2 | 柴天佑. 工业过程控制系统研究现状与发展方向[J]. 中国科学:信息科学, 2016, 46(8): 1003-1015. |
ChaiT Y. Industrial process control systems: research status and development direction[J]. Scientia Sinica, 2016, 46(8): 1003-1015. | |
3 | MotaA S, MenezesM R, SchmitzJ E, et al. Identification and online validation of a pH neutralization process using an adaptive network-based fuzzy inference system[J]. Chemical Engineering Communications, 2016, 203(4): 516-526. |
4 | ChenX, XueA K, PengD L, et al. Modeling of pH neutralization process using fuzzy recurrent neural network and DNA based NSGA-Ⅱ[J]. Journal of the Franklin Institute, 2014, 351(7): 3847-3864. |
5 | ZhangY J, JiaY, ChaiT Y, et al. Data-driven PID controller and its application to pulp neutralization process[J]. IEEE Transactions on Control Systems Technology, 2018, 26(3): 828-841. |
6 | VatankhahB, FarrokhiM. Nonlinear model-predictive control with disturbance rejection property using adaptive neural networks[J]. Journal of the Franklin Institute, 2017, 354(13): 5201-5220. |
7 | SinghP K, BhanotS, MohantaH K. Genetic optimization based adaptive fuzzy logic control of a pH neutralization process[J]. International Journal of Control & Automation, 2014, 7(11): 233-248. |
8 | 李泽龙, 杨春节, 刘文辉, 等. 基于LSTM-RNN模型的铁水硅含量预测[J]. 化工学报, 2018, 69(3): 992-997. |
LiZ L, YangC J, LiuW H, et al. Research on hot metal Si-content prediction based on LSTM-RNN[J]. CIESC Journal, 2018, 69(3): 992-997. | |
9 | SchmidhuberJ. Deep learning in neural networks: an overview[J]. Neural Networks, 2015, 61: 85-117. |
10 | 焦李成, 杨淑媛, 刘芳, 等. 神经网络七十年: 回顾与展望[J]. 计算机学报, 2016, 39(8): 1697-1716. |
JiaoL C, YangS Y, LiuF, et al. Seventy years beyond neural networks: retrospect and prospect[J]. Chinese Journal of Computers, 2016, 39(8): 1697-1716. | |
11 | 王康成, 尚超, 柯文思,等. 化工过程深度神经网络软测量的结构与参数自动调整方法[J]. 化工学报, 2018, 69(3): 900-906. |
WangK C, ShangC, KeW S, et al. Automatic structure and parameters tuning method for deep neural network soft sensor in chemical industries[J]. CIESC Journal, 2018, 69(3): 900-906. | |
12 | 席裕庚. 预测控制[M]. 北京: 国防工业出版社, 2013.Xi Y G. Predictive Control [M]. Beijing: National Defense Industry Press, 2013. |
13 | MayneD Q. Model predictive control: recent developments and future promise[J]. Automatica, 2014, 50(10): 2967-2986. |
14 | Anang, SutantoH, EdiL. Model predictive control design and performance analysis of a pasteurization process plant[C]// International Conference on Instrumentation, Control and Automation. Bandung, Indonesia:IEEE, 2017: 81-87. |
15 | QinS J, BadgwellT A. A survey of industrial model predictive control technology[J]. Control Engineering Practice, 2003, 11(7): 733-764. |
16 | AllgöwerF, FindeisenR, NagyZ K. Nonlinear model predictive control: from theory to application[J]. Journal of the Chinese Institute of Chemical Engineers, 2004, 35(3): 299-315. |
17 | 席裕庚, 李德伟, 林姝. 模型预测控制——现状与挑战[J]. 自动化学报, 2013, 39(3): 222-236.Xi Y G, Li D W, Lin S. Model predictive control—status and challenges[J]. Acta Automatica Sinica, 2013, 39(3): 222-236. |
18 | 何德峰, 丁宝苍, 于树友. 非线性系统模型预测控制若干基本特点与主题回顾[J]. 控制理论与应用, 2013, 30(3): 273-287. |
HeD F, DingB C, YuS Y. Review of fundamental properties and topics of model predictive control for nonlinear systems[J]. Control Theory & Applications, 2013, 30(3): 273-287. | |
19 | 孔小兵, 刘向杰. 基于输入输出线性化的连续系统非线性模型预测控制[J]. 控制理论与应用, 2012, 29(2): 217-224. |
KongX B, LiuX J. Continuous-time nonlinear model predictive control with input/output linearization[J]. Control Theory & Applications, 2012, 29(2): 217-224. | |
20 | 盖俊峰, 赵国荣, 周大旺. 一种基于线性近似的非线性系统模型预测控制方法[J]. 航天控制, 2015, 33(5): 3-7. |
GaiJ F, ZhaoG R, ZhouD W. Nonlinear model predictive control scheme based on linearization approximation[J]. Aerospace Control, 2015, 33(5): 3-7. | |
21 | YeQ, LouX Y, ShengL. Generalized predictive control of a class of MIMO models via a projection neural network[J]. Neurocomputing, 2017, 234: 192-197. |
22 | ZhaoJ M. NN-adaptive predictive control for a class of discrete-time nonlinear systems with input-delay[J]. Neurocomputing, 2016, 173: 1832-1838. |
23 | KillianM, MayerB, SchirrerA, et al. Cooperative fuzzy model predictive control[J]. Elektrotechnik Und Informationstechnik, 2015, 132(8): 474-480. |
24 | 王书斌, 单胜男, 罗雄麟. 基于T-S模糊模型与粒子群优化的非线性预测控制[J]. 化工学报, 2012, 63(S1): 176-187. |
WangS B, ShanS N, LuoX L. Nonlinear predictive control based on T-S fuzzy model and particle-swarm optimization[J]. CIESC Journal, 2012, 63(S1) : 176-187. | |
25 | YusufZ, WahabN A, AbusamA. Neural network-based model predictive control with CPSOGSA for SMBR filtration[J]. International Journal of Electrical & Computer Engineering, 2017, 7(3): 1538-1545. |
26 | KittisupakornP, SomsongP, HussainM A, et al. Improving of crystal size distribution control based on neural network-based hybrid model for purified terephthalic acid batch crystallizer[J]. Engineering Journal, 2017, 21(7): 319-331. |
27 | KumarD, BudmanH. Robust nonlinear MPC based on Volterra series and polynomial chaos expansions[J]. Journal of Process Control, 2014, 24(1): 304-317. |
28 | FigueroaJ L, BiagiolaS I, AlvarezM P, et al. Robust model predictive control of a Wiener-like system[J]. Journal of the Franklin Institute, 2013, 350(3): 556-574. |
29 | ŁawryńczukM. Nonlinear predictive control for Hammerstein-Wiener systems[J]. ISA Transactions, 2015, 55(1): 49-62. |
30 | AlamirM. Contraction-based nonlinear model predictive control formulation without stability-related terminal constraints[J]. Automatica, 2017, 75: 288-292. |
31 | GrüneL, StielerM. Asymptotic stability and transient optimality of economic MPC without terminal conditions[J]. Journal of Process Control, 2014, 24(8): 1187-1196. |
32 | 邹志云, 郭宇晴, 王志甄, 等. 非线性Hammerstein模型预测控制策略及其在pH中和过程中的应用[J]. 化工学报, 2012, 63(12): 3965-3970. |
ZouZ Y, GuoY Q, WangZ Z, et al. Nonlinear Hammerstein model predictive control strategy and its application to pH neutralization process[J]. CIESC Journal, 2012, 63(12): 3965-3970. | |
33 | 周洪煜, 梁东义, 周松杰. 废水中和过程的RBF神经网络预测控制[J]. 控制工程, 2014, 21(1): 79-83. |
ZhouH Y, LiangD Y, ZhouS J. RBFNN predictive control of wastewater neutralization process[J]. Control Engineering of China, 2014, 21(1): 79-83. | |
34 | 安爱民, 刘云利, 张浩琛, 等. 微生物燃料电池的动态性能分析及其神经网络预测控制[J]. 化工学报, 2017, 68(3): 1090-1098. |
AnA M, LiuY L, ZhangH C, et al. Dynamic performance analysis and neural network predictive control of microbial fuel cell [J]. CIESC Journal, 2017, 68(3): 1090-1098. | |
35 | 李明河, 周磊, 王健. 基于LM算法的溶解氧神经网络预测控制[J]. 农业机械学报, 2016, 47(6): 297-302. |
LiM H, ZhouL, WangJ. Neural network predictive control for dissolved oxygen based on Levenberg-Marquardt algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(6): 297-302. |
[1] | Enwei ZHI, Fei YAN, Mifeng REN, Gaowei YAN. Soft sensor of wet ball mill load parameters based on transfer variational autoencoder - label mapping [J]. CIESC Journal, 2019, 70(S1): 150-157. |
[2] | Dong HUANG, Xionglin LUO. Judgement of process transition control strategies for large-range conditions change of chemical processes [J]. CIESC Journal, 2019, 70(5): 1848-1857. |
[3] | Shipin YANG, Zhen HUANG, Lijuan LI, Jianquan SONG, Jing YE, Hui WANG. A deep dive diagnostic and correction algorithm for mismatched sub-models in complicated chemical processes [J]. CIESC Journal, 2019, 70(4): 1485-1493. |
[4] | Bowen SHI, Yanyan YIN, Fei LIU. Optimal control strategies combined with PSO and control vector parameterization for batchwise chemical process [J]. CIESC Journal, 2019, 70(3): 979-986. |
[5] | Baochang XU, Hua ZHANG, Jinshan WANG. Partial approximate least absolute deviation for nonlinear system identification based on radial basis function [J]. CIESC Journal, 2019, 70(2): 653-660. |
[6] | Shan DOU, Guangyu ZHANG, Zhihua XIONG. Anomaly detection of process unit based on LSTM time series reconstruction [J]. CIESC Journal, 2019, 70(2): 481-486. |
[7] | Zhiqiang GENG, Shaoxing JING, Ju BAI, Zhongkai WANG, Qunxiong ZHU, Yongming HAN. Improved intelligent warning method based on MWSPCA-CBR and its application in petrochemical industries [J]. CIESC Journal, 2019, 70(2): 572-580. |
[8] | Zhiqiang GENG, Meng XU, Qunxiong ZHU, Yongming HAN, Xiangbai GU. Research and application of soft measurement model for complex chemical processes based on deep learning [J]. CIESC Journal, 2019, 70(2): 564-571. |
[9] | Xiaohan ZHANG, Pingjiang WANG, Xiangbai GU, Yuan XU, Yanlin HE, Qunxiong ZHU. Research on principal components extraction based robust extreme learning machine(PCE-RELM) and its application to modeling chemical processes [J]. CIESC Journal, 2019, 70(2): 475-480. |
[10] | Haisheng CHEN, Tengfei WANG, Kejin HUANG, Yang YUAN, Xing QIAN, Liang ZHANG. Decentralized control system designs for reactive distillation columns with external recycle [J]. CIESC Journal, 2019, 70(2): 440-449. |
[11] | Wenjing LI, Meng LI, Junfei QIAO. Effluent BOD soft measurement based on mutual information and self-organizing RBF neural network [J]. CIESC Journal, 2019, 70(2): 687-695. |
[12] | Limin WANG, Libin LU, Furong GAO, Donghua ZHOU. Infinite horizon linear quadratic hybrid fault-tolerant control for multi-phase batch process [J]. CIESC Journal, 2019, 70(2): 541-547. |
[13] | LI Fan, XU Feng, LUO Xionglin. Control configuration design with genetic algorithm for decentralized control system [J]. CIESC Journal, 2018, 69(S2): 266-273. |
[14] | YANG Qing, YANG Yubing, LI Jianmin, FENG Hongli, ZHOU Xueyang, LIU Xiuhong. Partial nitrification coupled anaerobic ammonia oxidation process to treat low C/N domestic sewage [J]. CIESC Journal, 2018, 69(8): 3635-3642. |
[15] | FENG Liwei, ZHANG Cheng, LI Yuan, XIE Yanhong. DLNS-PCA-based fault detection for multimode batch process [J]. CIESC Journal, 2018, 69(7): 3159-3166. |
|