CIESC Journal ›› 2019, Vol. 70 ›› Issue (3): 913-921.doi: 10.11949/j.issn.0438-1157.20181029

• Fluid dynamics and transport phenomena • Previous Articles     Next Articles

Dehumidification performance experiment of hydrophilic non-woven PVC composite structured packing

Zhijia HUANG(),Liang LUO,Rui KE,Feifei ZHUO,Liang ZHONG   

  1. 1. School of Architecture and Engineering, Anhui University of Technology, Ma’anshan 243002, Anhui, China
  • Received:2018-09-13 Revised:2018-12-12 Online:2019-03-05 Published:2018-12-13
  • Contact: Zhijia HUANG E-mail:hzj@ahut.edu.cn

Abstract:

The hydrophilic non-woven PVC composite structured packing is used as the core of the solution dehumidification tower, and the dehumidification performance test of the hydrophilic non-woven PVC composite structured packing is carried out. The change of dehumidification rate, dehumidification efficiency, mass transfer coefficient and heat transfer coefficient of hydrophilic non-woven PVC composite structured packing under different air flow, liquid flow and liquid temperature were analyzed. Under experimental conditions, the maximum values of the dehumidification rate, dehumidification efficiency, mass transfer coefficient, and heat transfer coefficient are 11.05 g·kg-1, 86.7%, 12.95 g·(m2·s)-1, 10.33 W·(m2·℃)-1, respectively. Compared with the CELdek structured packing and plastic corrugated-hole plate packing, the hydrophile non-woven PVC composite structured packing has the best dehumidifying performance. The experimental data were regressed to obtain a dehumidification efficiency correlation formula of a hydrophilic non-woven PVC composite structured packing.

Key words: wettability, structured packing, solution, mass transfer, heat transfer

CLC Number: 

  • TU 834.9

Fig.1

Hydrophilic non-woven fabric PVC composite packing"

Fig.2

Experimental system process"

Table 1

Range of experimental parameter"

Fresh air temperature/℃

Fresh air moisture content/

(g·kg-1)

Fresh air flow/

(kg·s-1)

Liquid temperature/

Liquid

concentration/%

Liquid flow/

(kg·s-1)

27.7—28.715.4—16.30.067—0.27—2341.2—42.40.06—0.22

"

ParameterEquipment nameModelAccuracyMeasuring range
air
flowair volume coverTSI-8380± 3%, ± 10 m3·h-140—4000 m3·h-1
pressure dropwind pressure meterZC1000-1F± 1 Pa0—±3000 Pa
temperature and humiditytemperature and humidity loggersTR-72wf± 0.3℃,± 5% RH-10—60℃,10%—95% RH
liquid
temperatureT-type thermocoupleTT-T-24-SLE± 0.1℃-200—260℃
flowrotameterLZT-25S25D± 4%250—2500 L·h-1
concentrationelectronic balanceAUW120D± 0.01 mg0.01—42 g

Fig.3

Effect of air flow rate on dehumidification performance of hydrophilic non-woven PVC composite structured packing"

Fig.4

Effect of liquid flow rate on dehumidification performance of hydrophilic non-woven PVC composite structured packing"

Fig.5

Effect of inlet liquid temperature on dehumidification performance of hydrophilic non-woven PVC composite structured packing"

Fig.6

Comparison of experimental value and calculated value of dehumidification efficiency"

Fig.7

Comparison of experimental value and calculated value of dehumidification rate"

Table 3

Comparison with dehumidification performance of packing in literatures"

Ref.Packing typeAir mass flow/(kg·s-1)Liquid mass flow/(kg·s-1)Liquid temperature/℃Experimental result

35%LiCl[26]

plant fiber packing(CELdek)

range0.055—0.1780.06—0.08520.5—29.3
α/3.1—12.3 g·(m2·s)-1

34%LiCl[27]

plastic corrugated-hole plate packing

range0.038—0.1130.005—0.215
α/2—10 g·(m2·s)-1

33%LiCl[28]

paper corrugated structured packing

range0.171—0.2410.08—0.2438.3—39.4
k/3.1—5.3W·(m2·℃)-1

30%LiCl[29]

inorganic packing(GLASdek)

range0.20.082—0.19815.3—20.6
k/2.8—4.3 W·(m2·℃)-1

43%LiBr[30]

plant fiber packing(CELdek)

range0.378—0.5210.475—0.99422.2—26.7
η0.552—0.639

this paper

(42%LiBr)

hydrophilic non-woven PVC composite structure packing

range0.067—0.20.06—0.227—23
η0.224—0.896
α5.39—12.95 g·(m2·s)-1
k5.6—10.3 W·(m2·℃)-1

Table 4

Structural parameters of three structured packings"

Type

Specific surface area/

(m2·m-3

Porosity/

(m3·m-3

Peak height/mmPeak distance/mm
Type 13580.89636
Type 23500.921230
Type 33960.94725

Fig.8

Comparison of heat and mass transfer performance of different structured packings"

1 OliveiraA C, AfonsoC F, RiffatS B, et al. Thermal performance of a novel air conditioning system using a liquid desiccant [J]. Applied Thermal Engineering, 2000, 20(13): 1213-1223.
2 LazzarinR M, CastellottiF. A new heat pump desiccant dehumidifier for supermarket application[J]. Energy & Buildings, 2007, 39(1): 59-65.
3 FuH X, LiuX H. Review of the impact of liquid desiccant dehumidification on indoor air quality[J]. Building & Environment, 2017, 116: 158-172.
4 ParkJ Y, YoonD S, LiS, et al. Empirical analysis of indoor air quality enhancement potential in a liquid-desiccant assisted air conditioning system[J]. Building & Environment, 2017, 121: 11-25.
5 黄志甲, 鲁月红, 雷博, 等. 溴化锂溶液除湿器的实验研究[J]. 化工学报, 2010, 61(S2):81-85.
HuangZ J, LuY H, LeiB, et al. Experiment on performance of LiBr-liquid desiccant dehumidification[J]. CIESC Journal, 2010, 61(S2): 81-85.
6 DongC, LuL, WenT, et al. Experimental study on dehumidification performance enhancement by TiO2 superhydrophilic coating for liquid desiccant plate dehumidifiers[J]. Building & Environment, 2017, 124: 219-231.
7 钱俊飞, 殷勇高, 潘雄伟, 等. 平板降膜溶液除湿再生过程实验研究及模型验证[J]. 化工学报, 2014, 65(6): 2070-2077.
QianJ F, YinY G, PanX W, et al. Experimental investigation and model validation for liquid desiccant dehumidification and regeneration in falling-film plate[J]. CIESC Journal, 2014, 65(6): 2070-2077.
8 李群生, 马文涛, 张泽廷. 塔填料的研究现状及发展趋势[J]. 化工进展, 2005, 24(6):619-624.
LiQ S , MaW T, ZhangZ T. Research and development trend of column packing[J]. Chemical Industry and Engineering Progress, 2005, 24(6): 619-624.
9 贾绍义, 吴松海, 李杰, 等. 聚丙烯填料表面处理对润湿及传质性能的影响[J]. 化工学报, 2000, 51(6):832-835.
JiaS Y, WuS H, LiJ, et al. Influence of surface treatment of polypropylene packing on its wettability and mass transfer performance[J]. Journal of Chemical Industry and Engineering(China), 2000, 51(6): 832-835.
10 贾绍义, 李锡源, 王恩祥. 金属填料表面处理对润湿及传质性能的影响[J]. 化工学报, 1995, 51(1): 112-116.
JiaS Y, LiX Y, WangE X. Influence of surface treatment of metallic packing on its wettability and mass transfer performance[J]. Journal of Chemical Industry and Engineering(China), 1995, 51(1): 112-116.
11 LiK, ShenK, HuangZ H, et al. Wettability of natural microcrystalline graphite filler with pitch in isotropic graphite preparation[J]. Fuel, 2016, 180: 743-748.
12 YangJ, HuangJ, YeZ, et al. Influence of interfacial reaction on reactive wettability of molten Ag-Cu-X wt.%Ti filler metal on SiC ceramic substrate and mechanism analysis[J]. Applied Surface Science, 2018, 436: 768-778.
13 ChenH Y, WangX C, FuL, et al. Effects of surface microstructure on the active element content and wetting behavior of brazing filler metal during brazing Ti3SiC2 ceramic and Cu[J]. Vacuum, 2018, 156: 256-263.
14 DongC, LuL, WenT, et al. Experimental study on dehumidification performance enhancement by TiO2 superhydrophilic coating for liquid desiccant plate dehumidifiers[J]. Building & Environment, 2017, 124: 219-231.
15 QiR, HuY, WangY, et al. A new approach to enhance the heat and mass transfer of liquid desiccant dehumidification with a titanium dioxide superhydrophilic self-cleaning coating[J]. Journal of Cleaner Production, 2016, 112: 3555-3561.
16 LiZ, HiharaE, MatsuokaF, et al. Experimental analysis of mass transfer in adiabatic structured packing dehumidifier/regenerator with liquid desiccant[J]. International Journal of Heat & Mass Transfer, 2010, 53(13): 2856-2863.
17 WangL, XiaoF, ZhangX, et al. An experimental study on the dehumidification performance of a counter flow liquid desiccant dehumidifier[J]. International Journal of Refrigeration, 2016, 70: 289-301.
18 张欢, 李春茹, 李博佳. 金属填料型吸收式除湿器的除湿性能研究[J]. 暖通空调, 2009, 39(9): 46-50.
ZhangH, LiC R, LiB J. Research of dehumidification performance of a metal filler absorbing-type dehumidifier[J]. Heating Ventilating & Air Conditioning, 2009, 39(9): 46-50.
19 FuX, GeG, NiuX. Control performance of a dedicated outdoor air system adopting liquid desiccant dehumidification[J]. Applied Energy, 2011, 88(1): 143-149.
20 YinY, ZhangX. A new method for determining coupled heat and mass transfer coefficients between air and liquid desiccant[J]. International Journal of Heat & Mass Transfer, 2008, 51(13): 3287-3297.
21 ElsarragE, MagzoubE E M, JainS. Mass-transfer correlations for dehumidification of air by triethylene glycol in a structured packed column[J]. Industrial & Engineering Chemistry Research, 2004, 43(23): 7676-7681.
22 王凌士, 肖赋, 陆韬. 高效填料型除湿器新传质关联式实验研究 [J]. 制冷学报, 2017, 38(6): 1-6.
WangL S, XiaoF, LuT. New experimental correlations for the mass transfer of a high-efficiency packed-type dehumidifier[J]. Journal of Refrigeration, 2017, 38(6): 1-6.
23 ChungT W. Predictions of moisture removal efficiencies for packed-bed dehumidification systems[J]. Gas Separation & Purification, 1994, 8(4): 265-268.
24 TsairW C, ChungL M. Vapor pressures of the aqueous desiccants[J]. Journal of Chemical & Engineering Data, 1999, 44(5): 1024-1027.
25 ZurigatY H, Abu-ArabiM K, Abdul-WahabS A. Dehumidification by triethylene glycol desiccant in a packed column[J]. Energy Conversion & Management, 2004, 45(1): 141-155.
26 YinY G, ZhangX S. A new method for determining coupled heat and mass transfer coefficients between air and liquid desiccant[J]. International Journal of Heat & Mass Transfer, 2008, 51(13): 3287-3297.
27 LiZ, HiharaE, MatsuokaF, et al. Experimental analysis of mass transfer in adiabatic structured packing dehumidifier/regenerator with liquid desiccant[J]. International Journal of Heat & Mass Transfer, 2010, 53(13): 2856-2863.
28 戴智超, 殷勇高, 张小松. 波纹填料叉流除湿性能实验研究[J]. 建筑科学, 2014, 30(12): 102-105.
DaiZ C, YinY G, ZhangX S. Experimental research on the performance of cross-flow dehumidification of corrugated packing[J]. Building Science, 2014, 30(12): 102-105.
29 陈瑶. 基于非常温溶液除湿的新型复合型空调系统研究[D]. 南京: 东南大学, 2016.
ChenY. Analysis of a new hybrid air-condition system dehumidified by liquid desiccant with special temperature range[D]. Nanjing:Southeast University, 2016.
30 LiuX H, ZhangY, QuK Y, et al. Experimental study on mass transfer performances of cross flow dehumidifier using liquid desiccant[J]. Energy Conversion & Management, 2006, 47(15/16): 2682-2692.
[1] Hui SHANG, Lu LIU, Hanmo WANG, Wenhui ZHANG. Effect of microwave field on hydrogen bonds in glycerol aqueous solution system [J]. CIESC Journal, 2019, 70(S1): 23-27.
[2] Guanghua ZHANG, Qiuchen DONG, Jing LIU. Two-phase mass transfer of multi-benzene gemini quaternary ammonium salt in oil-water [J]. CIESC Journal, 2019, 70(S1): 61-68.
[3] Zhe LI, Wenlong WANG, Meng ZHANG, Jing SUN, Yanpeng MAO, Xiqiang ZHAO, Zhanlong SONG. Low frequency electromagnetic parameters and absorbing heat generation properties of carbon nanotubes [J]. CIESC Journal, 2019, 70(S1): 28-34.
[4] Siyu SHAN, Hongbo TAN. Study on heat and mass transfer characteristics outside flat tube for evaporative condensers [J]. CIESC Journal, 2019, 70(S1): 69-78.
[5] Nenglian FENG, Ruijin MA, Longke CHEN, Shikang DONG, Xiaofeng WANG, Xingyu ZHANG. Heat transfer characteristics of honeycomb liquid-cooled power battery module [J]. CIESC Journal, 2019, 70(5): 1713-1722.
[6] Yuting CHEN, Yanyan XU, Lei WANG, Shuang YE, Weiguang HUANG. Effect of evaporator heat transfer process on selection of mixture and operating condition in ORC system [J]. CIESC Journal, 2019, 70(5): 1723-1733.
[7] Lijie SHI, Min WANG. Phase behavior of K-Mg mixed salt during transformation-flotation from Yiliping magnesium sulfate-type salt lake [J]. CIESC Journal, 2019, 70(5): 1832-1841.
[8] Shuang ZHANG, Lei ZHAO, Lin GAO, Hua LIU. Exploration on thermo-mechanical characteristics of energy piles with double-U pipes buried in parallel by means of numerical simulations [J]. CIESC Journal, 2019, 70(5): 1750-1760.
[9] Jianguo YAN, Fengling ZHU, Pengcheng GUO, Xingqi LUO. Convective heat transfer of supercritical CO2 flowing a mini circular tube under high heat flux and low mass flux conditions [J]. CIESC Journal, 2019, 70(5): 1779-1787.
[10] Junlan YANG, Shuying NING. Study on boiling heat transfer characteristics of CO2/ lubricating oil mixture in mini-channel tube [J]. CIESC Journal, 2019, 70(5): 1772-1778.
[11] Xi CHEN, Yi LIN, Shuai SHAO. Influences of inclination angle and heating power on heat transfer performance of ethane pulsating heat pipe [J]. CIESC Journal, 2019, 70(4): 1383-1389.
[12] Yong JIA, Jin JIANG, Ren ZHAO, Weilong RONG, Liguo YIN, Mingyan GU, Hongming LONG. Investigation of mass transfer coefficient of absorption of sulfur dioxide by ammonia [J]. CIESC Journal, 2019, 70(4): 1367-1374.
[13] Yexia CHAI, Huayan CHEN, Yue JIA, Dandan LI, Chunrui WU, Xiaolong LYU. Enhancement on steam dropwise condensation heat transfer with superhydrophobic surfaces of PVDF hollow fiber heat exchange tubes [J]. CIESC Journal, 2019, 70(4): 1331-1339.
[14] Shuai MOU, Changying ZHAO, Zhiguo XU. Pool boiling heat transfer performance and mechanism of square copper pillar arrays with partially-modified surface [J]. CIESC Journal, 2019, 70(4): 1291-1301.
[15] Bingguo ZHU, Xinming WU, Liang ZHANG, Enhui SUN, Haisong ZHANG, Jinliang XU. Flow and heat transfer characteristics of supercritical CO2 in vertical tube [J]. CIESC Journal, 2019, 70(4): 1282-1290.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LING Lixia, ZHANG Riguang, WANG Baojun, XIE Kechang. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] LEI Zhigang, LONG Aibin, JIA Meiru, LIU Xueyi. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] SU Haifeng, LIU Huaikun, WANG Fan, LÜXiaoyan, WEN Yanxuan. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] WANG Jianlin, XUE Yaoyu, YU Tao, ZHAO Liqiang. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] SUN Fubao, MAO Zhonggui, ZHANG Jianhua, ZHANG Hongjian, TANG Lei, ZHANG Chengming, ZHANG Jing, ZHAI Fangfang. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] Gao Ruichang, Song Baodong and Yuan Xiaojing( Chemical Engineering Research Center, Tianjin University, Tianjin 300072). LIQUID FLOW DISTRIBUTION IN GAS - LIQUID COUNTER - CONTACTING PACKED COLUMN[J]. , 1999, 50(1): 94 -100 .
[7] Su Yaxin, Luo Zhongyang and Cen Kefa( Institute of Thermal Power Engineering , Zhejiang University , Hangzhou 310027). A STUDY ON THE FINS OF HEAT EXCHANGERS FROM OPTIMIZATION OF ENTROPY GENERATION[J]. , 1999, 50(1): 118 -124 .
[8] Luo Xiaoping(Department of Industrial Equipment and Control Engineering , South China University of Technology, Guangzhou 510641)Deng Xianhe and Deng Songjiu( Research Institute of Chemical Engineering, South China University of Technology, Guangzhou 5106. RESEARCH ON FLOW RESISTANCE OF RING SUPPORT HEAT EXCHANGER WITH LONGITUDINAL FLUID FLOW ON SHELL SIDE[J]. , 1999, 50(1): 130 -135 .
[9] Jin Wenzheng , Gao Guangtu , Qu Yixin and Wang Wenchuan ( College of Chemical Engineering, Beijing Univercity of Chemical Technology, Beijing 100029). MONTE CARLO SIMULATION OF HENRY CONSTANT OF METHANE OR BENZENE IN INFINITE DILUTE AQUEOUS SOLUTIONS[J]. , 1999, 50(2): 174 -184 .
[10]

LI Qingzhao;ZHAO Changsui;CHEN Xiaoping;WU Weifang;LI Yingjie

.

Combustion of pulverized coal in O2/CO2 mixtures and its pore structure development

[J]. , 2008, 59(11): 2891 -2897 .