CIESC Journal ›› 2019, Vol. 70 ›› Issue (3): 850-856.doi: 10.11949/j.issn.0438-1157.20181024

• Fluid dynamics and transport phenomena • Previous Articles     Next Articles

Experimental visualization on thermal energy storage enhancement through metal foam filled annuli

Pan WEI1(),Jiabang YU1,Zengxu GUO1,Xiaohu YANG1,2(),Yaling HE2   

  1. 1. Institute of the Building Environment & Sustainability Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
    2. Key Laboratory of Thermal Fluid Science and Engineering of Ministry of Education, Xi’an Jiaotong University, Xi’an 710049, Shaanxi,China
  • Received:2018-09-12 Revised:2018-12-20 Online:2019-03-05 Published:2019-01-04
  • Contact: Xiaohu YANG E-mail:wpexperience@stu.xjtu.edu.cn;xiaohuyang@xjtu.edu.cn

Abstract:

Intensified heat transfer research was carried out for the heat exchange basic unit-heat exchange tube in the tube-and-tube phase change regenerator. The metal foam was added on the side of the phase change material to enhance the heat storage. Phase interface was recorded by a high-definition camera during the charging process. T-type thermocouples were attached separately on the radial and axial sides of the PCM. Charging processes of smooth tube and metal foam tube were quantified under the flow rate of 0.15 m·s-1. The results demonstrated that the involvement of metal foam can significantly enhance the efficiency of thermal energy storage under the same charging condition (initial temperature, inlet temperature and flow rate). It took over 2.9 more times for the melting time of pure paraffin than that of metal foam under the same condition. The temperature response rate of metal foam tube was much higher and the temperature distribution was more uniform, in comparison with that of smooth tube.

Key words: phase change heat exchanger, solar energy, phase change, porous media, visualization

CLC Number: 

  • TQ 124

Fig.1

Schematic show of experimental system"

Fig.2

Structure of heat storage tube and layout of monitoring points for temperature (a) and images of copper foam with and without saturated by PCM(b)"

Fig.3

Internal and external phase interface changes of two samples against time"

Fig.4

Comparison of paraffin with composite PCM on timewise development of temperatures at different radial positions"

Fig.5

Comparison of pure paraffin with metal foam/paraffin composite on timewise development of temperatures along different axial directions"

1 HuangX, AlvaG, JiaY T, et al. Morphological characterization and applications of phase change materials in thermal energy storage: a review[J]. Renewable and Sustainable Energy Reviews, 2017, 72: 128-145.
2 LiT X, LeeJ H, WangR Z, et al. Heat transfer characteristics of phase change nanocomposite materials for thermal energy storage application[J]. International Journal of Heat and Mass Transfer, 2014, 75: 1-11.
3 TaoY B, LinC H, HeY L. Effect of surface active agent on thermal properties of carbonate salt/carbon nanomaterial composite phase change material[J]. Applied Energy, 2015, 156: 478-489.
4 YangX H, LuZ, BaiQ S, et al. Thermal performance of a shell-and-tube latent heat thermal energy storage unit: role of annular fins[J]. Applied Energy, 2017, 202: 558-570.
5 Al-abidiA A, MatS, SopianK, et al. Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers[J]. Applied Thermal Engineering, 2013, 53(1): 147-156.
6 RathodM K, BanerjeeJ. Thermal performance enhancement of shell and tube latent heat storage unit using longitudinal fins[J]. Applied Thermal Engineering, 2015, 75: 1084-1092.
7 TaoY B, LiuY K, HeY L. Effects of PCM arrangement and natural convection on charging and discharging performance of shell-and-tube LHS unit[J]. International Journal of Heat and Mass Transfer, 2017, 115: 99-107.
8 ZhangP, MengZ N, ZhuH, et al. Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam[J]. Applied Energy, 2017, 185: 1971-1983.
9 YangX H, FengS S, ZhangQ L, et al. The role of porous metal foam on the unidirectional solidification of saturating fluid for cold storage[J]. Applied Energy, 2017, 194: 508-521.
10 WangZ C, ZhangZ Q, JiaL, et al. Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Li-ion battery[J]. Applied Thermal Engineering, 2015, 78: 428-436.
11 AldossT K, RahmanM M. Comparison between the single-PCM and multi-PCM thermal energy storage design[J]. Energy Conversion and Management, 2014, 83: 79-87.
12 SarıA, AlkanC, DöĞüŞCüD K, et al. Micro/nano encapsulated n-tetracosane and n-octadecane eutectic mixture with polystyrene shell for low-temperature latent heat thermal energy storage applications[J]. Solar Energy, 2015, 115: 195-203.
13 ZhengY, BartonJ L, TuzlaA K, et al. Experimental and computational study of thermal energy storage with encapsulated NaNO3 for high temperature applications[J]. Solar Energy, 2015, 115: 180-194.
14 IbrahimN I, Al-sulaimanF A., RahmanS, et al. Heat transfer enhancement of phase change materials for thermal energy storage applications: a critical review[J]. Renewable and Sustainable Energy Reviews, 2017, 74: 26-50.
15 YataganbabaA, OzkahramanB, KurtbasI. Worldwide trends on encapsulation of phase change materials: a bibliometric analysis (1990–2015)[J]. Applied Energy, 2017, 185: 720-731.
16 MesalhyO, LafdiK, ElgafyA, et al. Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix[J]. Energy Conversion and Management, 2005, 46(6): 847-867.
17 SiahpushA, O’brienJ, CrepeauJ. Phase change heat transfer enhancement using copper porous foam[J]. Journal of Heat Transfer, 2008, 130: 082301.
18 WuZ G, ZhaoC Y. Experimental investigations of porous materials in high temperature thermal energy storage systems[J]. Solar Energy, 2011, 85(7): 1371-1380.
19 XiaoX, ZhangP, LiM. Preparation and thermal characterization of paraffin/metal foam composite phase change material[J]. Applied Energy, 2013, 112: 1357-1366.
20 XiaoX, ZhangP, LiM. Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage[J]. International Journal of Thermal Sciences, 2014, 81: 94-105.
21 XiaoX, ZhangP, LiM. Experimental and numerical study of heat transfer performance of nitrate/expanded graphite composite PCM for solar energy storage[J]. Energy Conversion and Management, 2015, 105: 272-284.
22 吴志根, 赵长颖, 顾清之. 多孔介质在高温相变蓄热中的强化换热[J]. 化工学报, 2012, 63(S1): 119-122.
WuZ G, ZhaoC Y, GuQ Z. Heat transfer enhancement of high temperature thermal energy storage using porous materials[J]. CIESC Joural, 2012,63(S1): 119-122.
23 吴志根, 陶文铨. 金属矩阵材料在相变蓄热中的强化换热分析[J]. 工程热物理学报, 2013, 34(2): 307-309.
WuZ G, TaoW Q. Analysis of the heat transfer performance of metal matrix matirial in the phase change thermal storage system[J]. Journal of Engineering Thermophysics, 2013, 34(2): 307-309.
24 杲东彦, 陈振乾. 格子Boltzmann方法模拟泡沫金属内相变材料热传导融化传热过程[J]. 热科学与技术, 2011, 10(1): 6-11.
GaoD Y, ChenZ Q. Lattice Boltzmann simulation of conduction melting of phase change materials in metal foams[J]. Journal of Thermal Science and Technology, 2011, 10(1): 6-11.
25 杲东彦, 陈振乾, 陈凌海. 开孔泡沫铝内石蜡融化相变过程的可视化实验研究[J]. 化工学报, 2014, 65(S1): 95-100.
GaoD Y, ChenZ Q, ChenL H. Visualized experiment of paraffin wax in aluminum foam with open cells[J]. CIESC Journal, 2014, 65(S1): 95-100.
26 杨佳霖, 杜小泽, 杨立军, 等. 泡沫金属强化石蜡相变蓄热过程可视化实验[J]. 化工学报, 2015, 66(2): 497-503.
YangJ L, DuX Z, YangL J, et al. Visualized experiemnt on dynamic thermal behavior of phase change material in metal foam[J]. CIESC Journal, 2015,66(2): 497-503.
27 LiuZ Y, YaoY P, WuH Y. Numerical modeling for solid-liquid phase change phenomena in porous media: shell-and-tube type latent heat thermal energy storage[J]. Applied Energy, 2013, 112: 1222-1232.
28 TaoY B, YouY, HeY L. Lattice Boltzmann simulation on phase change heat transfer in metal foams/paraffin composite phase change material [J]. Applied Thermal Engineering, 2016, 93: 476-485.
29 YangX H, WangW B, YangC, et al. Solidification of fluid saturated in open-cell metallic foams with graded morphologies[J]. International Journal of Heat and Mass Transfer, 2016, 98: 60-69.
30 WangC Y, FengL L, LiW, et al. Shape-stabilized phase change materials based on polyethylene glycol/porous carbon composite: the influence of the pore structure of the carbon materials[J]. Solar Energy Materials and Solar Cells, 2012, 105: 21-26.
31 张寅平, 胡汉平, 孔祥东, 等. 相变贮能-理论与应用[M]. 合肥: 中国科学技术大学出版社, 1996: 24-25.
ZhangY P, HuH P, KongX D, et al. Phase Change Energy Storage Theory and Application[M]. Hefei: University of Science and Technology of China Press, 1996: 23-24.
32 肖鑫, 张鹏. 泡沫石墨/石蜡复合相变材料热物性研究[J]. 工程热物理学报, 2013, 34(3): 530-533.
XiaoX, ZhangP.Thermal characterization of graphite foam/paraffin composite phase change material[J]. Journal of Engineering Thermophysics, 2013, 34(3): 530-533.
[1] Hua CHEN, Xiuli LIU, Yaxing YANG, Liqiong ZHONG, Lei WANG, Na GAO. Numerical simulation of foam metal copper/paraffin phase change thermal storage process [J]. CIESC Journal, 2019, 70(S1): 86-92.
[2] Wenyu LI, Liangliang SUN, Yanping YUAN, Xiaoling CAO, Bo XIANG. Heat storage and release characteristics of solar phase change Kang and influence factors [J]. CIESC Journal, 2019, 70(5): 1761-1771.
[3] Linchen ZHOU, Zhigao SUN, Ling LU, Sai WANG, Juan LI, Cuimin LI. Formation and stability of HCFC–141b hydrate in organic phase change emulsion [J]. CIESC Journal, 2019, 70(5): 1674-1681.
[4] Huiru WANG, Zhenyu LIU, Yuanpeng YAO, Huiying WU. Visualized experiment on solid-liquid phase change heat transfer enhancement with multiple PCMs [J]. CIESC Journal, 2019, 70(4): 1263-1271.
[5] Shunhao WANG, Wenli ZHU, Zhenggen HU, Rui ZHOU, Liu YU, Bin WANG, Xiaobin ZHANG. Numerical simulation and experimental validation of evaporation characteristics of scaled liquid hydrogen tank [J]. CIESC Journal, 2019, 70(3): 840-849.
[6] Yaowu WANG, Jianping PENG, Yuezhong DI, Pengcheng HAO. Mechanism of deterioration for dry barrier material in aluminum electrolysis cells [J]. CIESC Journal, 2019, 70(3): 1035-1041.
[7] Xiaoshi LIU, Deqiu ZOU, Ruijun HE, Xianfeng MA. Preparation and heat transfer characteristics of GO/paraffin composite phase change emulsions [J]. CIESC Journal, 2019, 70(3): 1188-1197.
[8] Xin ZHOU, Ledong DENG, Hong WANG, Xun ZHU, Rong CHEN, Qiang LIAO, Yudong DING. Effect of cooled cylindrical surface on droplet dynamic behavior [J]. CIESC Journal, 2019, 70(3): 883-891.
[9] Xin YAN, Jinliang XU. Character of sessile gold-water nanofluid droplet evaporation with solar heating on superhydrophobic surface [J]. CIESC Journal, 2019, 70(3): 892-900.
[10] Bo DAI, Zeyu ZHOU, Yan ZHANG, Shuangshuang LIN, Xuejun LIU. Design of safe distance monitoring system for hazardous chemicals storage stack [J]. CIESC Journal, 2019, 70(2): 707-715.
[11] Wei CHEN, Ying REN. Similarity between fluidization and phase transition [J]. CIESC Journal, 2019, 70(1): 1-9.
[12] Sunxi ZHOU, Xuelai ZHANG, Sheng LIU, Qiyang CHEN, Xiaofeng XU, Yinghui WANG. Preparation and properties of decyl alcohol-palmitic acid/expanded graphite low temperature composite phase change material [J]. CIESC Journal, 2019, 70(1): 290-297.
[13] Jingyan LI, Zhongliang LIU, Yu ZHOU, Yanxia LI. Study of thermal-hydrologic-mechanical numerical simulation model on CO2 plume geothermal system [J]. CIESC Journal, 2019, 70(1): 72-82.
[14] XIE Yanqi, ZHU Kai, WANG Yabo. Effects of freezing conditions on cryopreservation of plant cells [J]. CIESC Journal, 2018, 69(S2): 200-204.
[15] ZHANG Liang, SHI Zhongke. Application of phase change materials in automobile energy saving [J]. CIESC Journal, 2018, 69(S2): 17-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LING Lixia, ZHANG Riguang, WANG Baojun, XIE Kechang. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] LEI Zhigang, LONG Aibin, JIA Meiru, LIU Xueyi. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] SU Haifeng, LIU Huaikun, WANG Fan, LÜXiaoyan, WEN Yanxuan. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] WANG Jianlin, XUE Yaoyu, YU Tao, ZHAO Liqiang. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] SUN Fubao, MAO Zhonggui, ZHANG Jianhua, ZHANG Hongjian, TANG Lei, ZHANG Chengming, ZHANG Jing, ZHAI Fangfang. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] Gao Ruichang, Song Baodong and Yuan Xiaojing( Chemical Engineering Research Center, Tianjin University, Tianjin 300072). LIQUID FLOW DISTRIBUTION IN GAS - LIQUID COUNTER - CONTACTING PACKED COLUMN[J]. , 1999, 50(1): 94 -100 .
[7] Su Yaxin, Luo Zhongyang and Cen Kefa( Institute of Thermal Power Engineering , Zhejiang University , Hangzhou 310027). A STUDY ON THE FINS OF HEAT EXCHANGERS FROM OPTIMIZATION OF ENTROPY GENERATION[J]. , 1999, 50(1): 118 -124 .
[8] Luo Xiaoping(Department of Industrial Equipment and Control Engineering , South China University of Technology, Guangzhou 510641)Deng Xianhe and Deng Songjiu( Research Institute of Chemical Engineering, South China University of Technology, Guangzhou 5106. RESEARCH ON FLOW RESISTANCE OF RING SUPPORT HEAT EXCHANGER WITH LONGITUDINAL FLUID FLOW ON SHELL SIDE[J]. , 1999, 50(1): 130 -135 .
[9] Jin Wenzheng , Gao Guangtu , Qu Yixin and Wang Wenchuan ( College of Chemical Engineering, Beijing Univercity of Chemical Technology, Beijing 100029). MONTE CARLO SIMULATION OF HENRY CONSTANT OF METHANE OR BENZENE IN INFINITE DILUTE AQUEOUS SOLUTIONS[J]. , 1999, 50(2): 174 -184 .
[10]

LI Qingzhao;ZHAO Changsui;CHEN Xiaoping;WU Weifang;LI Yingjie

.

Combustion of pulverized coal in O2/CO2 mixtures and its pore structure development

[J]. , 2008, 59(11): 2891 -2897 .