CIESC Journal ›› 2019, Vol. 70 ›› Issue (4): 1420-1428.doi: 10.11949/j.issn.0438-1157.20181006

• Catalysis, kinetics and reactors • Previous Articles     Next Articles

Properties of Sr modified Cu-based catalysts for hydrogenation of fructose to mannitol

Fengteng HU(),Jianlong YAO,Xiaoqing LI,Sihan LI,Xinhuan YAN()   

  1. State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
  • Received:2018-09-10 Revised:2019-01-23 Online:2019-04-05 Published:2019-01-24
  • Contact: Xinhuan YAN E-mail:1259896575@qq.com;xhyan@zjut.edu.cn

Abstract:

A supported Cu catalyst was prepared by using a co-precipitation method. The Cu catalyst was modified by adding alkaline earth metal strontium to improve the activity and selectivity for the hydrogenation of fructose to prepare mannitol. Systematic characterizations, with ICP-MS, XRD, TEM, H2-TPR, XPS and CO2-TPD, showed that the increase catalytic activity of the catalyst is due to the fact that the formation of SrCO3 formed on the surface of the support can increase the specific surface area of the catalyst and improve the dispersion of the copper species. In addition, the medium-strong basic sites formed on the surface of SrCO3 can activate the carbonyl group into β-furanose which can be easily hydrogenated into mannitol. Fructose conversion of around 100% and mannitol selectivity of 79% were achieved in the conditions of 1.1 mol·L-1 fructose concentration, catalyst dosage of 6% of reactant quality, reaction temperature of 373 K, hydrogen pressure of 4.0 MPa and Cu/Sr atomic ratio of 7∶1. The excellent stability of the Cu-Sr/SiO2 catalyst remained basically unchanged after recycling for 20 times.

Key words: Sr, catalyst, fructose, hydrogenation, mannitol, activity, selectivity

CLC Number: 

  • O 643.38

Table 1

Physicochemical characterizations of catalysts"

催化剂

Cu/

%(mass)

Sr/

%(mass)

S BET /

(m2·g-1)

D pro /

nm

V pro /(cm3·g-1)
Cu/SiO2 9.8 0 131.2 16.97 0.51
0.5Sr+Cu/SiO2 9.6 0.46 161.0 16.15 0.71
1.0Sr+Cu/SiO2 9.8 0.98 168.4 16.65 0.71
1.5Sr+Cu/SiO2 9.5 1.37 186.1 15.97 0.74
2.0Sr+Cu/SiO2 9.8 1.86 197.8 15.89 0.70
3.0Sr+Cu/SiO2 9.7 2.75 180.9 16.10 0.75

Fig.1

TEM images of reduced catalysts"

Fig.2

XRD patterns of calcined catalysts and reduced catalysts"

Fig.3

H2-TPR profiles of calcined catalysts"

Fig.4

FT-IR spectra of calcined catalysts"

Fig.5

Cu 2p XPS spectra of reduced catalysts"

Fig.6

Cu LMM Auger spectra of reduced catalysts"

Table 2

Cu species on reduced catalysts"

催化剂 KE/eV AP/eV 2p3/2 BE/eV X C u 0 /%
Cu+ Cu0 Cu+ Cu0
Cu/SiO2 914.2 918.0 1846.9 1850.7 932.7 44
0.5Sr+Cu/SiO2 914.1 918.0 1846.8 1850.7 932.7 51
1.0Sr+Cu/SiO2 914.1 918.0 1846.8 1850.7 932.7 55
1.5Sr+Cu/SiO2 914.1 917.7 1846.9 1850.5 932.8 57
2.0Sr+Cu/SiO2 914.2 917.8 1846.9 1850.5 932.7 61
3.0Sr+Cu/SiO2 914.1 917.8 1846.9 1850.6 932.8 48

Fig.7

CO2-TPD patterns of calcined catalysts"

Table 3

Catalytic performance test results"

催化剂 Cu/Sr比例 果糖转化率/% 甘露醇选择性/%
Cu/SiO2 60 64
0.5Sr+Cu/SiO2 29:1 85 69
1.0Sr+Cu/SiO2 14:1 96 71
1.5Sr+Cu/SiO2 10:1 97 75
2.0Sr+Cu/SiO2 7:1 99 79
3.0Sr+Cu/SiO2 5:1 89 73
SrCO3/SiO2

Fig.8

Effect of reaction temperature on fructose hydrogenation"

Fig.9

Effect of hydrogen pressure on fructose hydrogenation"

Fig.10

Stability of Cu+2%Sr/SiO2 catalyst"

Fig.11

TEM images of fresh and used Cu+2%Sr/SiO2 catalyst"

1 Castoldi M C M , Câmara L D T , Aranda D A G . Kinetic modeling of sucrose hydrogenation in the production of sorbitol and mannitol with ruthenium and nickel-Raney catalysts[J]. Reaction Kinetics & Catalysis Letters, 2009, 98(1): 83-89.
2 刘维, 张群峰, 李小年 . 钼改性雷尼镍催化剂的葡萄糖加氢性能[J]. 工业催化, 2010, 18(11): 36-40.
Liu W , Zhang Q F , Li X N . Glucose hydrogenation performance of molybdenum modified Raney nickel catalyst [J]. Industrial Catalysis, 2010, 18(11): 36-40.
3 Heinen A W , Papadogianakis G , Sheldon R A , et al . Factors effecting the hydrogenation of fructose with a water soluble Ru-TPPTS complex. A comparison between homogeneous and heterogeneous catalysis[J]. Journal of Molecular Catalysis A Chemical, 1999, 142(1): 17-26.
4 Heinen A W , Peters J A , Van B H . Hydrogenation of fructose on Ru/C catalysts [J]. Carbohydrate Research, 2000, 328(4): 449-457.
5 胡明进, 朱年磊 . 甘露醇合成及分离研究进展[J]. 山东化工, 2008, 37(2): 16-18.
Hu M J , Zhu N L . Progress in synthesis and separation of mannitol[J]. Shandong Chemical Industry, 2008, 37(2): 16-18.
6 Zhang X , Wilson K , Lee A F . Heterogeneously catalyzed hydrothermal processing of C5—C6 sugars[J]. Chemical Reviews, 2016, 116(19): 12328-12368.
7 Ahmed M J , Kadhum A A H . Hydrogenation of D-fructose over activated charcoal supported platinum catalyst[J]. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42(1): 114-119.
8 Zhang J , Wu S , Liu Y , et al . Hydrogenation of fructose over magnetic catalyst derived from hydrotalcite precursor[J]. Chemical Engineering Science, 2013, 99(32): 171-176.
9 Kuusisto J , Mikkola J P , Casal P P , et al . Kinetics of the catalytic hydrogenation of D -fructose over a CuO-ZnO catalyst[J]. Chemical Engineering Journal, 2005, 115(1/2): 93-102.
10 Zelin J , Meyer C I , Regenhardt S A , et al . Selective liquid-phase hydrogenation of fructose to D-mannitol over copper-supported metallic nanoparticles[J].Chemical Engineering Journal, 2017, 319: 48-56.
11 胡菊, 潘亚林, 黎汉生, 等 . 铈改性甲醇合成铜基催化剂的制备及其性能[J]. 化工学报, 2014, 65(7): 2770-2775.
Hu J , Pan Y L , Li H S , et al . Preparation and properties of copper-based catalysts for the synthesis of hydrazine-modified methanol[J]. CIESC Journal, 2014, 65(7): 2770-2775.
12 Hegedüs M , Göbölös S , Margitfalvi J L . Stereoselective hydrogenation of D-fructose to D-mannitol on skeletal and supported copper-containing catalysts[J]. Studies in Surface Science & Catalysis, 1993, 78: 187-194.
13 Toukoniitty B , Kuusisto J , Mikkola J P , et al . Effect of ultrasound on catalytic hydrogenation of D-fructose to D-mannitol[J]. Industrial & Engineering Chemistry Research, 2005, 44(25): 9370-9375.
14 林慧, 颜春荣, 徐春祥, 等 . HPLC-ELSD法同时测定食品中的10种糖和糖醇[J]. 食品科学, 2013, 34(12): 286-291.
Lin H , Yan C R , Xu C X , et al . Simultaneous determination of ten sugars and sugar alcohols in food by HPLC-ELSD[J]. Food Science, 2013, 34(12): 286-291.
15 Xie T , Xu L , Liu C , et al . Magnetic composite ZnFe2O4/SrFe12O19: preparation, characterization, and photocatalytic activity under visible light[J]. Applied Surface Science, 2013, 273(2): 684-691.
16 Wang Z , Brouri D , Casale S , et al . Exploration of the preparation of Cu/TiO2, catalysts by deposition-precipitation with urea for selective hydrogenation of unsaturated hydrocarbons[J]. Journal of Catalysis, 2016, 340: 95-106.
17 Wei X , Wang A Q , Yang X F , et al . Synthesis of Pt-Cu/SiO2 catalysts with different structures and their application in hydrodechlorination of 1, 2-dichloroethane[J]. Applied Catalysis B Environmental, 2012, 121/122(10): 105-114.
18 Zhu Y , Zhu Y , Ding G , et al . Highly selective synthesis of ethylene glycol and ethanol via hydrogenation of dimethyl oxalate on Cu catalysts: influence of support[J]. Applied Catalysis A General, 2013, 468(12): 296-304.
19 Zhao Y , Zhang Y , Wang Y , et al . Structure evolution of mesoporous silica supported copper catalyst for dimethyl oxalate hydrogenation[J]. Applied Catalysis A General, 2017, 539: 59-69.
20 Zhang Y , Ye C , Guo C , et al . In2O3 -modified Cu/SiO2, as an active and stable catalyst for the hydrogenation of methyl acetate to ethanol[J]. Chinese Journal of Catalysis, 2018, 39(1): 99-108.
21 Ding J , Popa T , Tang J , et al . Highly selective and stable Cu/SiO2, catalysts prepared with a green method for hydrogenation of diethyl oxalate into ethylene glycol[J]. Applied Catalysis B Environmental, 2017, 209: 530-542.
22 Zheng X , Lin H , Zheng J , et al . Lanthanum oxide-modified Cu/SiO2 as a high-performance catalyst for chemoselective hydrogenation of dimethyl oxalate to ethylene glycol[J]. American Chemical Society Catalysis, 2013, 3(3): 2738-2749.
23 Ding T , Tian H , Liu J , et al . Highly active Cu/SiO2 catalysts for hydrogenation of diethyl malonate to 1, 3-propanediol[J]. Chinese Journal of Catalysis, 2016, 37(4): 484-493.
24 Baidya T , Vegten N V , Verel R , et al . SrO-Al2O3 mixed oxides: a promising class of catalysts for oxidative coupling of methane[J]. Journal of Catalysis, 2011, 281(2): 241-253.
25 Kobayashi Y , Omata K , Yamada M . Screening of additives to a Co/SrCO3 catalyst by artificial neural network for preferential oxidation of Co in excess H2 [J]. Ind. Eng. Chem. Res., 2010, 49(4): 1541-1549.
26 Mierczynski P , Chalupka K A , Maniukiewicz W , et al . SrAl2O4, spinel phase as active phase of transesterification of rapeseed oil[J]. Applied Catalysis B Environmental, 2015, 164: 176-183.
27 Gawande M B , Goswami A , Felpin F , et al . Cu and Cu-based nanoparticles: synthesis and applications in catalysis[J]. Chemical Reviews, 2016, 116(6): 3722.
28 Wang B , Cui Y , Chao W , et al . Role of copper content and calcination temperature in the structural evolution and catalytic performance of Cu/P25 catalysts in the selective hydrogenation of dimethyl oxalate[J]. Applied Catalysis A General, 2016, 509: 66-74.
29 Chen L F , Guo P J , Qiao M H , et al . Cu/SiO2 catalysts prepared by the ammonia-evaporation method: texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol[J]. Journal of Catalysis, 2008, 257(1): 172-180.
30 Raytchev P D , Bendjeriou A , Dutasta J P , et al . A new step towards solid base catalysis: azidoproazaphosphatranes immobilized in nanopores of mesoporous silica[J]. Advanced Synthesis & Catalysis, 2011, 353(11/12): 2067-2077.
31 Hattori H . Heterogeneous basic catalysis [J]. Chemical Reviews, 1995, 95(3): 537-558.
[1] Hui SHANG, Yu DING, Wenhui ZHANG. Research progress of microwave assisted biodiesel production [J]. CIESC Journal, 2019, 70(S1): 15-22.
[2] Fanrui MENG, Boyang LI, Xianchun LI, Shuang QIU. Catalysis effects of K2CO3 for gasification of semi-coke [J]. CIESC Journal, 2019, 70(S1): 99-109.
[3] Yucai ZENG, Xiaoling LIU, Qifeng LIANG, Jianquan LYU. One-pot synthesis of 2-amino-4-aryl-3-cyano-4H-benzochromene derivatives catalyzed by K2CO3 under microwave irradiation [J]. CIESC Journal, 2019, 70(S1): 110-114.
[4] Wu SU, Xiaogang SHI, Yingya WU, Jinsen GAO, Xingying LAN. CFD simulation on hydrogenation of acetylene to ethylene in slurry bed [J]. CIESC Journal, 2019, 70(5): 1858-1867.
[5] Caiyun WEI, Jingjing TAN, Xiaoli XIA, Yongxiang ZHAO. Influence of calcination temperature on CuMgAl catalytic performance for hydrogenation of furfuralcohol to pentanediol [J]. CIESC Journal, 2019, 70(4): 1409-1419.
[6] Wensheng LIANG, Jiangtao LIU, Yue ZHAO, Wei HUANG, Zhijun ZUO. Theoretical calculation of effect of NiO and Ni catalysts for benzoic acid pyrolysis [J]. CIESC Journal, 2019, 70(4): 1429-1435.
[7] Yucong SONG, Xiaoshu DING, Yahui YAN, Shufang WANG, Yanji WANG. Catalytic performance of graphene oxide composite metal catalyst in dimethyl carbonate synthesis [J]. CIESC Journal, 2019, 70(4): 1401-1408.
[8] Lianxia HOU, Zhaoping YUAN, Hongchang QIAO, Jinghong ZHOU, Xinggui ZHOU. Mechanistic study on catalytic conversion of glucose into low carbon glycols over nickel promoted tungsten carbide catalyst [J]. CIESC Journal, 2019, 70(4): 1390-1400.
[9] Haibin YU, Qiang LIU, Likun ZHOU, Zan CHEN, Chao LUO, Guanyan ZHANG, Jianjie QIAO Lina WANG. Preparation of MnO x /ZrO2 catalyst and catalytic ozonation degradation of methylorange [J]. CIESC Journal, 2019, 70(4): 1436-1445.
[10] Wanwan GUO, Ruyue LI, Jun HUANG. Copper catalyst supported on cross-linked phenanthroline for oxidative synthesis of 2,3,5-trimethyl-1,4-benzoquinone [J]. CIESC Journal, 2019, 70(3): 929-936.
[11] Desheng LI, Chao ZHANG, Shihai DENG, Zhifeng HU, Jinlong LI, Yuanhui LIU. Experimental study on effective nitrate removal from sewage by ZVI-based catalyzed reduction [J]. CIESC Journal, 2019, 70(3): 1065-1074.
[12] Xiaohang LI, Yun LIU, Yinjiao SU, Yang TENG, Yanjun GUAN, Kai ZHANG. Difference of fly ash characteristics from PC and CFB boilers and its effect on mercury adsorption capability [J]. CIESC Journal, 2019, 70(3): 1075-1082.
[13] Xiaoxue CAO, Shaochang JI, Wenjie KUANG, Anping LIAO, Ping LAN, Jinyan ZHANG. Solubility and ternary phase diagram of azithromycin dihydrate in water-organic solvent [J]. CIESC Journal, 2019, 70(3): 817-829.
[14] Shuai HE, Feng GUO, Guojun KANG, Jian YU, Xuefeng REN, Guangwen XU. Preparation of palladium-based catalysts by complexing-solvothermal method and catalytic oxidation of m-xylene [J]. CIESC Journal, 2019, 70(3): 937-943.
[15] Quan TANG, Yanglong GUO, Wangcheng ZHAN, Yun GUO, Li WANG, Yunsong WANG. Catalytic combustion of propane over PdxPty-ZSM-5/Cordierite monolithic catalyst [J]. CIESC Journal, 2019, 70(3): 944-950.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LING Lixia, ZHANG Riguang, WANG Baojun, XIE Kechang. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] LEI Zhigang, LONG Aibin, JIA Meiru, LIU Xueyi. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] SU Haifeng, LIU Huaikun, WANG Fan, LÜXiaoyan, WEN Yanxuan. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] WANG Jianlin, XUE Yaoyu, YU Tao, ZHAO Liqiang. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] SUN Fubao, MAO Zhonggui, ZHANG Jianhua, ZHANG Hongjian, TANG Lei, ZHANG Chengming, ZHANG Jing, ZHAI Fangfang. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] Gao Ruichang, Song Baodong and Yuan Xiaojing( Chemical Engineering Research Center, Tianjin University, Tianjin 300072). LIQUID FLOW DISTRIBUTION IN GAS - LIQUID COUNTER - CONTACTING PACKED COLUMN[J]. , 1999, 50(1): 94 -100 .
[7] Su Yaxin, Luo Zhongyang and Cen Kefa( Institute of Thermal Power Engineering , Zhejiang University , Hangzhou 310027). A STUDY ON THE FINS OF HEAT EXCHANGERS FROM OPTIMIZATION OF ENTROPY GENERATION[J]. , 1999, 50(1): 118 -124 .
[8] Luo Xiaoping(Department of Industrial Equipment and Control Engineering , South China University of Technology, Guangzhou 510641)Deng Xianhe and Deng Songjiu( Research Institute of Chemical Engineering, South China University of Technology, Guangzhou 5106. RESEARCH ON FLOW RESISTANCE OF RING SUPPORT HEAT EXCHANGER WITH LONGITUDINAL FLUID FLOW ON SHELL SIDE[J]. , 1999, 50(1): 130 -135 .
[9] Jin Wenzheng , Gao Guangtu , Qu Yixin and Wang Wenchuan ( College of Chemical Engineering, Beijing Univercity of Chemical Technology, Beijing 100029). MONTE CARLO SIMULATION OF HENRY CONSTANT OF METHANE OR BENZENE IN INFINITE DILUTE AQUEOUS SOLUTIONS[J]. , 1999, 50(2): 174 -184 .
[10]

LI Qingzhao;ZHAO Changsui;CHEN Xiaoping;WU Weifang;LI Yingjie

.

Combustion of pulverized coal in O2/CO2 mixtures and its pore structure development

[J]. , 2008, 59(11): 2891 -2897 .