CIESC Journal ›› 2019, Vol. 70 ›› Issue (5): 1815-1822.doi: 10.11949/j.issn.0438-1157.20181005

• Separation engineering • Previous Articles     Next Articles

Solvent evaluation model base on energy consumption objective for aromatic extraction distillation units

Qin WANG(),Bingjian ZHANG,Chang HE,Qinglin CHEN()   

  1. School of Chemical Engineering and Technology /Guangdong Engineering Technology Research Center for Petrochemical Energy Conservation, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
  • Received:2018-09-10 Revised:2019-03-05 Online:2019-05-05 Published:2019-05-10
  • Contact: Qinglin CHEN E-mail:wangq356@mail2.sysu.edu.cn;chqlin@mail.sysu.edu.cn

Abstract:

Based on the NRTL activity coefficient model, the whole process simulation and process parameters were optimized by using Aspen Plus for extractive distillation equipment for aromatics recovery from different single component extractants. With consideration of multiple variables and their interactions, a coordinative optimization strategy was further proposed from iterative optimization of local coupling parameters. At given separation specifications, energy consumption was optimized through adjusting critical operating parameters, such as the feed stages of extractive distillation column(EDC), the feed stage of entrainer recovery column(ERC) and the reflux ratio of ERC. An energy consumption model correlated with physical properties was presented based on the energy transfer rules. A solvent evaluation model based on the energy consumption objective for aromatic extraction distillation processes was put forward through the analysis of energy consumption and separation efficiency with different solvents. The results show that the molecular weight and boiling point of solvent are the pivotal factors influencing the energy consumption of aromatics extraction distillation units. There is a high correlation of the energy consumption model with the R 2 value bigger than 0.9 which can guide the selection, evaluation and design of the extracting solvent for an aromatic ED process.

Key words: extractive-distillation, thermodynamics, optimization, arene, property correlation, model

CLC Number: 

  • TQ 028.3

Table 1

Relative volatility of methyl cyclohexane (i) and benzene (j) varying with different solutions[25] "

溶剂组成 F Solvent/% T bub/℃ ɑij
无溶剂 80 0.81
环丁砜 87.8 121 4.2
环丁砜-0.8%H2O 87.8 113 4.7
环丁砜-10%COS 87.8 125 3.6

Fig.1

Typical flowsheet of aromatic extractive distillation unit"

Table 2

Typical operating conditions of process"

设备 操作参数

EDC[border:border-top:solid;]

原料S2进料状态 饱和气相
塔板数 固定值
塔顶/底压力/MPa 0.07/0.075

ERC

塔板数 固定值
塔顶/底压力/MPa -0.05/-0.025

Fig.2

Optimization procedure for adjustable parameters"

Table 3

Physical property and energy consume of different solvents for benzene-cyclohexane extractive distillation process"

溶剂 分子式 M/(g?mol-1) T b/K Q EDCR/(GJ?h-1) Q ERCR/(GJ?h-1) R ERC F S/(kmol?h-1)
N-methyl-2-pyrrolidone C5H9NO 99.130 477.420 5.115 5.561 1.096 288.220
N,N-dimethylformamide C3H7NO 73.100 425.150 5.170 5.205 1.881 362.223
N-formylmorphol C5H9NO2 115.130 513.150 5.417 9.010 1.440 242.481
triethylene glycol C6H14O4 150.170 561.500 5.873 13.701 1.381 193.689
tetraethylene glycol C8H18O5 194.230 602.700 6.180 15.707 0.248 175.638
dimethyl sulfone C2H6OS 78.130 464.000 4.943 9.312 3.060 344.661
tetramethylene sulfone C4H8O2S 120.170 560.450 5.275 9.688 0.847 260.632
furfural C5H4O2 96.090 434.850 5.033 4.824 1.588 349.152
aminobenzene C6H7N 93.130 457.150 5.039 10.448 3.418 272.229
methyl benzoate C8H8O2 136.150 472.650 5.256 4.810 0.708 258.181
2-pyrrolidone C4H7NO 85.110 524.320 5.175 12.041 2.852 292.076
glyceryl triacetate C9H14O6 218.210 532.150 6.061 10.541 0.551 180.986
quinoline C9H7N 129.160 510.310 5.332 6.189 0.452 254.335
benzyl acetate C9H10O2 150.177 487.150 5.472 4.283 14.790 230.040
phenol C6H6O 94.113 454.990 5.094 14.094 4.946 275.459
N-hexyl-acetate C8H16O2 144.214 444.650 5.351 7.084 2.000 219.166
methyl isobutyl ketone C6H12O 100.161 389.150 6.330 12.681 5.384 360.443

Fig.3

Relation of energy consumption, operating parameters and physical properties for benzene-cyclohexane extractive distillation process"

Table 4

Regression parameter of operating parameters vs physical properties for benzene-cyclohexane extractive distillation process"

关联关系 p 00 p 10 p 01 p 20 p 11 p 02 R 2
N min,ERC-R ERC,R min,ERC 0.9433 0.04556 1.502 -0.01314 0.2514 -0.5201 0.9889
F SH V,M 1842 -50.36 -5.63 0.4307 0.0813 0.002913 0.9218
Q solvent-T b,M 9.666 3.203 1.134 0.3232 0.6963 -0.1054 0.9919

Fig.4

Relation of energy consumption, operating parameters and physical properties for toluene-n-heptane extractive distillation process"

Table 5

Regression parameter of operating parameters vs physical properties for toluene-n-heptane extractive distillation process"

关联关系 p 00 p 10 p 01 p 20 p 11 p 02 R 2
N min,ERC-R ERC,R min,ERC 1.074 0.07526 2.27 -0.0224 0.2504 -0.6305 0.9849
F SH V,M -73.88 14.31 -0.7569 -1.369 -0.1749 0.003865 0.9138
Q solvent-T b,M 5.302 -0.06346 0.05997 0.0001166 -0.0001447 9.862×10-5 0.9742
1 范景新, 臧甲忠, 于海斌, 等 . 重芳烃轻质化研究进展[J]. 工业催化, 2015, 23(9): 666-673.
Fan J X , Zang J Z , Yu H B , et al . Research progress in conversion of heavy aromatics to light ones[J]. Industrial Catalysis, 2015, 23(9): 666-673.
2 段然, 巩雁军, 孔德嘉, 等 . 轻烃芳构化催化剂的研究进展[J]. 石油学报(石油加工), 2013, 29(4): 726-737.
Duan R , Gong Y J , Kong D J , et al . Development of the catalyst for light paraffins aromatization[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2013, 29(4): 726-737.
3 智研咨询集团 . 2018—2024年中国PX行业市场全景评估及投资潜力研究报告[EB/OL]. 北京: 智妍咨询集团, 2018[2018-10-05]. http: // .
Zhiyan Consultative Group . Report of Panoramic Evaluation and Investment Potential Research for PX Industry Market in China from 2018 to 2024[ EB/OL ]. Beijing: Zhiyan Consultative Group, 2018[2018-10-05]. http: // .
4 Rahimpour M R , Jafari M , Iranshahi D . Progress in catalytic naphtha reforming process: a review[J]. Appl. Energ., 2013, 109(2): 79-93.
5 韩凤山, 林克之 . 世界芳烃生产技术的发展趋势[J]. 当代石油石化, 2006, 14(5): 30-35.
Han F S , Lin K Z . Development trends of aromatic production and technology in the world[J]. Petroleum & Petrochemical Today, 2006, 14(5): 30-35.
6 UOP . Aromatics[EB/OL]. New York: Honeywell, 2013[2018-10-05]. https: // .
7 袁天聪 . 芳烃抽提工艺评析[J].石油化工设计, 2003, 20(4): 5-8.
Yuan T C . Summary of aromatics extraction process[J]. Petrochemical Design, 2003, 20(4): 5-8.
8 徐春明, 杨朝合, 林世雄 . 石油炼制工程[M]. 北京: 石油工业出版社, 2009: 557-569.
Xu C M , Yang Z H , Lin S X . Petroleum Refining Engineering[M]. Beijing: Petroleum Industry Press, 2009: 557-569.
9 Ho T L , Fieser M , Fieser L . Fieser and Fieser’s Reagents for Organic Synthesis: Tetramethylene Sulfone (Sulfolane) [M]. New York: John Wiley & Sons Inc., 2006: 23.
10 Wittig R , Lohmann J , Gmehling J . Prediction of phase equilibria and excess properties for systems with sulfones[J]. AIChE J., 2010, 49(2): 530-537.
11 Wang Z R , Huang L , Xia S Q , et al . Isobaric (vapour + liquid) equilibria for sulfolane with toluene, ethylbenzene, and isopropylbenzene at 101.33 kPa [J]. J. Chem. Thermodyn., 2011, 43(12): 1865-1869.
12 Santiago R S , Aznar M . Liquid-liquid equilibria for quaternary mixtures of nonane + undecane + (benzene or toluene or m-xylene) + sulfolane at 298.15 and 313.15 K [J]. Fluid Phase Equilib., 2007, 253(2): 137-141.
13 Doulabi F S M , Mohsen-Nia M . Ternary liquid-liquid equilibria for systems of (sulfolane + toluene or chloronaphthalene + octane)[J]. J. Chem. Eng. Data, 2006, 51(4): 1431-1435.
14 Ko M , Im J , Sung J Y , et al . Liquid-liquid equilibria for the binary systems of sulfolane with alkanes[J]. J. Chem. Eng. Data, 2007, 52(4): 34-38.
15 Awwad A M , Al-Dujaili A H , Al-Haideri A M A . Liquid–liquid equilibria for pseudo-ternary systems: (sulfolane + 2-ethoxyethanol) + octane + toluene at 293.15 K[J]. Fluid Phase Equilib., 2008, 270(1/2): 10-14.
16 Wisniak J , Ortega J , Fernández L . A fresh look at the thermodynamic consistency of vapour-liquid equilibria data[J]. J. Chem. Thermodyn., 2017, 105: 385-395.
17 汪勤, 张冰剑, 何畅, 等 . 环丁砜萃取精馏过程模拟分析及工艺参数优化[J]. 化工学报, 2017, 68(5): 1969-1976.
Wang Q , Zhang B J , He C , et al . Process simulation and optimization of sulfolane extractive distillation[J]. CIESC Journal, 68(5): 1969-1976.
18 Choi Y J , Cho K W , Cho B W , et al . Optimization of the sulfolane extraction plant based on modeling and simulation [J]. J. Chem. Eng., 2000, 17(6): 712-718.
19 Li L M , Tu Y Q , Sun L Y , et al . Enhanced efficient extractive distillation by combining heat-integrated technology and intermediate heating[J]. Ind. Eng. Chem. Res., 2016, 55(32): 8837-8847.
20 Berg L , Yeh A . Separation of m-xylene from o-xylene by extractive distillation [J]. Chem. Eng. Commun., 2012, 54(1-6): 149-159.
21 Miyano Y , Henry S . Constants and infinite dilution activity coefficients of propane, propene, butane, isobutene, 1-butene, isobutane, trans-2-butene and 1, 3-butadiene in 1-propanol at T (260 to 340) K[J]. J. Chem. Thermodyn., 2004, 36(2): 101-106.
22 Krummen M , Gmehling J . Measurement of activity coefficients at infinite dilution in N-methyl-2-pyrrolidone and N-formylmorpholine and their mixtures with water using the dilutor technique[J]. Fluid Phase Equilib., 2004, 215(2): 283-294.
23 Lek-Utaiwana P , Suphanit B , Douglas P L , et al . Design of extractive distillation for the separation of close-boiling mixtures: solvent selection and column optimization[J]. Comput. Chem. Eng., 2011, 35(6): 1088-1100.
24 Lyu Z , Zhou T , Chen L , et al . Simulation based ionic liquid screening for benzene–cyclohexane extractive separation[J]. Chem. Eng. Sci., 2014, 113(13): 45-53.
25 董文威, 傅吉全 . 苯-环己烷体系萃取精馏溶剂的计算机筛选[J]. 计算机与应用化学, 2011, 28(6): 757-760.
Dong W W , Fu J Q . Solvents selection by using of computer in extractive distillation separation for the system of benzene - cyclohexane[J]. Computers and Applied Chemistry, 2011, 28(6): 757-760.
26 Chen B H , Lei Z G , Li Q S , et al . Application of CAMD in separating hydrocarbons by extractive distillation[J]. AIChE J., 2010, 51(12): 3114-3121.
27 Qin J W , Ye Q , Xiong X J , et al . Control of benzene-cyclohexane separation system via extractive distillation using sulfolane as entrainer [J]. Ind. Eng. Chem. Res., 2013, 52(31): 10754-10766.
28 Aniya V , De D , Satyavathi B . A comprehensive approach towards dehydration of tert-butyl alcohol by extractive distillation: entrainer selection, thermodynamic modeling and process optimization[J]. Ind. Eng. Chem. Res., 2016, 55(25): 6982-6995.
29 Kossack S , Kraemer K , Gani R , et al . A systematic synthesis framework for extractive distillation processes[J]. Chem. Eng. Res. Des., 2008, 86(7): 781–792.
30 刘家祺 . 传质分离过程[M]. 北京: 高等教育出版社, 2005: 8-21.
Liu J Q . Separation Process of Mass Transfer[M]. Beijing: Higher Education Press, 2005: 8-21.
31 Henley E J , Seader J D , Roper D K . Separation Process Principles[M]. New York: John Wiley & Sons Inc., 2002: 46.
32 Renon H , Prausnitz J M . Local compositions in thermodynamic excess functions for liquid mixtures [J]. AIChE J., 1968, 14(1): 135-144.
[1] Hui SHANG, Lu LIU, Hanmo WANG, Wenhui ZHANG. Effect of microwave field on hydrogen bonds in glycerol aqueous solution system [J]. CIESC Journal, 2019, 70(S1): 23-27.
[2] Daofeng MEI, Haibo ZHAO, Shuiping YAN. Thermodynamics simulation of biogas fueled chemical looping reforming for H2 generation using NiO/Ca2Al2SiO7 [J]. CIESC Journal, 2019, 70(S1): 193-201.
[3] Yanrao CHEN, Taoyan MAO, Cheng ZHENG. Microwave synthesis and properties of dioctadecyldihydroxyethyl ammonium bromide [J]. CIESC Journal, 2019, 70(S1): 226-234.
[4] Hao YANG, Eryan YAN. Simulation research of microwave heating efficiency for beamed energy thruster [J]. CIESC Journal, 2019, 70(S1): 93-98.
[5] Weifeng XU, Aipeng JIANG, Haokun WANG, Enhui JIANG, Qiang DING, Hanhan GAO. A grid reconstruction strategy based on pseudo Wigner-Ville analysis for dynamic optimization problem [J]. CIESC Journal, 2019, 70(S1): 158-167.
[6] Nenglian FENG, Ruijin MA, Longke CHEN, Shikang DONG, Xiaofeng WANG, Xingyu ZHANG. Heat transfer characteristics of honeycomb liquid-cooled power battery module [J]. CIESC Journal, 2019, 70(5): 1713-1722.
[7] Shuang ZHANG, Lei ZHAO, Lin GAO, Hua LIU. Exploration on thermo-mechanical characteristics of energy piles with double-U pipes buried in parallel by means of numerical simulations [J]. CIESC Journal, 2019, 70(5): 1750-1760.
[8] Liangjie JIN, Peng BAI, Xianghai GUO. Energy-saving optimization of partial diabatic distillation with side streams [J]. CIESC Journal, 2019, 70(5): 1804-1814.
[9] Dong HUANG, Xionglin LUO. Judgement of process transition control strategies for large-range conditions change of chemical processes [J]. CIESC Journal, 2019, 70(5): 1848-1857.
[10] Weiwei SHEN, Daoming DENG, Qiaoping LIU, Jing GONG. Prediction model of critical gas velocities in gas wells based on annular mist flow theory [J]. CIESC Journal, 2019, 70(4): 1318-1330.
[11] Wei FENG, Hongfeng GAO, Gui WANG, Langlang WU, Jingqin XU, Zhuangmei LI, Ping LI, Hongcun BAI, Qingjie GUO. Molecular model and pyrolysis simulation of Zaoquan coal [J]. CIESC Journal, 2019, 70(4): 1522-1531.
[12] Peng LI, Zhonghe HAN, Xiaoqiang JIA, Zhongkai MEI, Xu HAN. Influence of dynamic turbine efficiency on performance of organic Rankine cycle system [J]. CIESC Journal, 2019, 70(4): 1532-1541.
[13] Qianqing LIANG, Xuehu MA, Kai WANG, Jiang CHUN, Tingting HAO, Zhong LAN, Yaxiong WANG. Gas-liquid Taylor flow pressure drop in rectangular meandering microchannel [J]. CIESC Journal, 2019, 70(4): 1272-1281.
[14] Wensheng LIANG, Jiangtao LIU, Yue ZHAO, Wei HUANG, Zhijun ZUO. Theoretical calculation of effect of NiO and Ni catalysts for benzoic acid pyrolysis [J]. CIESC Journal, 2019, 70(4): 1429-1435.
[15] Wenxin DU, Lianying WU, Weitao ZHANG, Can CHEN, Yangdong HU. Research on vibration attrition of steel balls in liquid [J]. CIESC Journal, 2019, 70(4): 1505-1511.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LING Lixia, ZHANG Riguang, WANG Baojun, XIE Kechang. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] LEI Zhigang, LONG Aibin, JIA Meiru, LIU Xueyi. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] SU Haifeng, LIU Huaikun, WANG Fan, LÜXiaoyan, WEN Yanxuan. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] WANG Jianlin, XUE Yaoyu, YU Tao, ZHAO Liqiang. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] SUN Fubao, MAO Zhonggui, ZHANG Jianhua, ZHANG Hongjian, TANG Lei, ZHANG Chengming, ZHANG Jing, ZHAI Fangfang. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] Gao Ruichang, Song Baodong and Yuan Xiaojing( Chemical Engineering Research Center, Tianjin University, Tianjin 300072). LIQUID FLOW DISTRIBUTION IN GAS - LIQUID COUNTER - CONTACTING PACKED COLUMN[J]. , 1999, 50(1): 94 -100 .
[7] Su Yaxin, Luo Zhongyang and Cen Kefa( Institute of Thermal Power Engineering , Zhejiang University , Hangzhou 310027). A STUDY ON THE FINS OF HEAT EXCHANGERS FROM OPTIMIZATION OF ENTROPY GENERATION[J]. , 1999, 50(1): 118 -124 .
[8] Luo Xiaoping(Department of Industrial Equipment and Control Engineering , South China University of Technology, Guangzhou 510641)Deng Xianhe and Deng Songjiu( Research Institute of Chemical Engineering, South China University of Technology, Guangzhou 5106. RESEARCH ON FLOW RESISTANCE OF RING SUPPORT HEAT EXCHANGER WITH LONGITUDINAL FLUID FLOW ON SHELL SIDE[J]. , 1999, 50(1): 130 -135 .
[9] Jin Wenzheng , Gao Guangtu , Qu Yixin and Wang Wenchuan ( College of Chemical Engineering, Beijing Univercity of Chemical Technology, Beijing 100029). MONTE CARLO SIMULATION OF HENRY CONSTANT OF METHANE OR BENZENE IN INFINITE DILUTE AQUEOUS SOLUTIONS[J]. , 1999, 50(2): 174 -184 .
[10]

LI Qingzhao;ZHAO Changsui;CHEN Xiaoping;WU Weifang;LI Yingjie

.

Combustion of pulverized coal in O2/CO2 mixtures and its pore structure development

[J]. , 2008, 59(11): 2891 -2897 .