CIESC Journal ›› 2019, Vol. 70 ›› Issue (5): 1702-1712.doi: 10.11949/j.issn.0438-1157.20180962

• Fluid dynamics and transport phenomena • Previous Articles     Next Articles

Verification of coarse-grained CFD-DEM method in multiple flow regimes

Junjie LIN(),Kun LUO(),Shuai WANG,Chenshu HU,Jianren FAN   

  1. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, Zhejiang, China
  • Received:2018-08-27 Revised:2019-02-22 Online:2019-05-05 Published:2019-05-10
  • Contact: Kun LUO E-mail:linjunjie@zju.edu.cn;zjulk@zju.edu.cn

Abstract:

The computation load for traditional computational fluid dynamics-discrete element method (CFD-DEM) simulations tremendously increases when the number of particles augments in the system. The coarse-grained CFD-DEM method, in which a number of real particles are lumped into a numerical parcel, can remarkably reduce the computation load. It is necessary to extensively verify the coarse-grained CFD-DEM method before it is applied. Therefore, in the current work, the coarse-grained CFD-DEM method is validated in fluidized beds with various fluidization regimes. On one hand, it is found that gas and solid features (i.e., void fraction, pressure signals, and particle velocity) obtained from this method match well with the experiment measurements. On the other hand, as the coarse-grained ratios increase, the calculation time for a specific case is significantly reduced. In summary, the coarse-grained CFD-DEM contributes a great improvement of calculation efficiency while a little loss of numerical accuracy, which is expected to be a powerful tool to simulate gas-solid flow dynamics in large-scale dense particulate systems.

Key words: coarse-grained method, DEM, CFD, fluidized bed, gas-solid flow, computational efficiency

CLC Number: 

  • TQ 018

Fig.1

Experimental setup of bubbling fluidized bed adopted in simulation"

Table 1

Physical properties and parameters(bubbling fluidized bed)"

Parameter Value
particle diameter/mm 3.256
particle density/(kg?m-3) 1131
original number of particles 95000
restitution coefficient 0.97
friction coefficient 0.35
collision spring constant/(N?m-1) 800
parcel diameter of CGP-k1.5/mm 4.884
parcel number of CGP-k1.5 28148
parcel diameter of CGP-k2/mm 6.512
parcel number of CGP-k2 11875
fluid density/(kg?m-3) 1.205
dynamic viscosity/(Pa·s) 1.8 × 10-5
superficial velocity/(m?s-1) 2.1

Fig.2

Transient distribution of particle velocity in bubbling fluidized bed simulated by traditional and coarse-grained CFD-DEM"

Fig.3

Time-averaged distribution of bubbling fluidized bed"

Fig.4

Comparison of pressure drop and frequency spectrum in bubbling fluidized bed"

Fig.5

Comparison of calculation time with different methods in bubbling fluidized bed"

Fig.6

Schematic diagram of spouting fluidized bed used in present simulation"

Table 2

Physical properties and parameters(spouting fluidized bed)"

Parameter Value
particle diameter/mm 4.04
particle density/(kg?m-3) 2526
original number of particles 44800
restitution coefficient 0.97
friction coefficient 0.33
collision spring constant/(N?m-1) 800
parcel diameter of CGP-k1.5/mm 6.06
parcel number of CGP-k1.5 13274
parcel diameter of CGP-k2/mm 8.08
parcel number of CGP-k2 5600
fluid density/(kg?m-3) 1.205
dynamic viscosity/(Pa·s) 1.8 × 10-5
spouting velocity/(m?s-1) 65
background velocity/(m?s-1) 3.5

Fig.7

Transient distribution of particle velocity in spouting fluidized bed simulated by traditional and coarse-grained CFD-DEM"

Fig.8

Time-averaged gas-solid properties in spouting fluidized bed"

Fig.9

Particle vertical velocity in spouting fluidized bed measured with different methods"

Fig.10

Comparison of calculation time with different methods in spouting fluidized bed"

Fig.11

Sketch of 3-D circulating fluidized bed and grid of calculation domain"

Fig.12

Distributions of time-averaged solid holdup at different height of slices x = 0 and y = 0 of riser"

Fig.13

Full-loop distribution of pressure in CFB with time-averaged properties"

1 Erkiaga A , Lopez G , Amutio M , et al . Influence of operating conditions on the steam gasification of biomass in a conical spouted bed reactor[J]. Chemical Engineering Journal, 2014, 237:259-267.
2 Li T , Zhang Y , Grace J R , et al . Numerical investigation of gas mixing in gas-solid fluidized beds[J]. AIChE Journal, 2010, 56(9):2280-2296.
3 Braga M B , Wang Z , Grace J R , et al . Slot-rectangular spouted bed: hydrodynamic stability and effects of operating conditions on drying performance[J]. Drying Technology, 2015, 33(2):216-226.
4 Amirjan M , Khorsand H , Khorasani M . Fluidized bed coating efficiency and morphology of coatings for producing Al-based nanocomposite hollow spheres[J]. International Journal of Minerals, Metallurgy, and Materials, 2014, 21(11):1146-1151.
5 周池楼, 赵永志 . 离散单元法及其在流态化领域的应用 [J]. 化工学报, 2014, 65(7): 2520-2534.
Zhou C L , Zhao Y Z . Discrete element method and its applications in fluidization[J]. CIESC Journal, 2014, 65(7):2520-2534.
6 Zhang K , Luo K , Fan J R . TFM and DEM numerical simulation of bubbling fluidized bed with uniform gas inlet [J]. Journal of Engineering Thermophysics, 2011, 32(12): 2076-2079.
7 Sun L Y , Luo K , Fan J R . Numerical investigation on methanation kinetic and flow behavior in full-loop fluidized bed reactor [J]. Fuel, 2018, 231: 85-93.
8 Sun L Y , Luo K , Fan J R . Production of synthetic natural gas by CO methanation over Ni/Al2O3 catalyst in fluidized bed reactor [J]. Catal. Commun., 2018, 105: 37-42.
9 Sun L Y , Luo K , Fan J R . Numerical study on flow behavior of ultrafine powders in conical spouted bed with coarse particles[J]. Chemical Engineering Research and Design, 2017, 125 :461-470.
10 Wang Q G , Feng Y Q , Lu J F , et al . Numerical study of particle segregation in a coal beneficiation fluidized bed by a TFM-DEM hybrid model: influence of coal particle size and density[J]. Chemical Engineering Journal, 2015, 260:240-257.
11 万晓涛, 郑雨, 魏飞, 等 . 循环流化床提升管气固湍流的计算流体力学模拟——k-ε-k p-ε p-Θ 5参数双流体模型 [J]. 化工学报, 2002, 53(5): 461-468.
Wan X T , Zheng Y , Wei F , et al .Numerical simulation of gas-solid turbulent flow in riser reactor——k-ε-k p-ε p-Θ two-phase flow model[J]. Journal of Chemical Industry and Engineering (China), 2002, 53(5): 461-468.
12 Wang S , Luo K , HU C S , et al . CFD-DEM study of the effect of cyclone arrangements on the gas-solid flow dynamics in the full-loop circulating fluidized bed [J]. Chemical Engineering Science, 2017, 172: 199-215.
13 Luo K , Wang S , Yang S L , et al . Computational fluid dynamics-discrete element method investigation of pressure signals and solid back-mixing in a full-loop circulating fluidized bed [J]. Industrial & Engineering Chemistry Research, 2017, 56(3): 799-813.
14 Yang S L , Luo K , Fan J R , et al . Particle-scale investigation of the solid dispersion and residence properties in a 3-D spout-fluid bed [J]. AIChE Journal, 2014, 60(8): 2788-2804.
15 Yang S L , Sun Y H , Wang J W , et al . Influence of operating parameters and flow regime on solid dispersion behavior in a gas-solid spout-fluid bed[J]. Chemical Engineering Science, 2016, 142:112-125.
16 Wang S , Luo K , Yang S , et al . Parallel LES-DEM simulation of dense flows in fluidized beds[J]. Applied Thermal Engineering, 2017, 111: 1523-1535.
17 Tsuji Y , Kawaguchi T , Tanaka T . Discrete particle simulation of two-dimensional fluidized bed[J]. Powder Technology, 1993, 77(1): 79-87.
18 Washino K , Hsu C H , Kawaguchi T , et al . Similarity model for DEM simulation of fluidized bed[J]. Journal of the Society of Powder Technology, 2007, 44(3): 198-205.
19 Sakai M , Abe M , Shigeto Y , et al . Verification and validation of a coarse grain model of the DEM in a bubbling fluidized bed[J]. Chemical Engineering Journal, 2014, 244:33-43.
20 Sakai M , Yamada Y , Shigeto Y , et al . Large-scale discrete element modeling in a fluidized bed[J]. International Journal for Numerical Methods in Fluids, 2010, 64(10/11/12):1319-1335.
21 Lu L Q , Benyahia S , Li T . An efficient and reliable predictive method for fluidized bed simulation[J]. AIChE Journal, 2017, 63(12): 5320-5334.
22 Yang S L , Cahyadi A , Sun Y , et al . CFD-DEM investigation into the scaling up of spout-fluid beds via two interconnected chambers [J]. AIChE Journal, 2016, 62(6): 1898-1916.
23 Yang S L , Cahyadi A , Wang J , et al . DEM study of granular flow characteristics in the active and passive regions of a three-dimensional rotating drum [J]. AIChE Journal, 2016, 62(11): 3874-3888.
24 Yang S L , Luo K , Qiu K , et al . Coupled computational fluid dynamics and discrete element method study of the solid dispersion behavior in an internally circulating fluidized bed [J]. Industrial & Engineering Chemistry Research, 2014, 53(16): 6759-6772.
25 Yang S L , Luo K , Fang M , et al . Discrete element study of solid mixing behavior with temperature difference in three-dimensional bubbling fluidized bed [J]. Industrial & Engineering Chemistry Research, 2014, 53(17): 7043-7055.
26 Hu C S , Luo K , Yang S L , et al . A comprehensive numerical investigation on the hydrodynamics and erosion characteristics in a pressurized fluidized bed with dense immersed tube bundles [J]. Chemical Engineering Science, 2016, 153: 129-145.
27 Smagorinsky J . General circulation experiments with the primitive equations [J]. Monthly Weather Review, 1963, 91(3): 99-164.
28 Gidaspow D . Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions[M]. New York:Academic Press, 1994.
29 Lu B , Wang W , Li J . Eulerian simulation of gas-solid flows with particles of Geldart groups A, B and D using EMMS-based meso-scale model[J]. Chemical Engineering Science, 2011, 66(20): 4624-4635.
30 Lu L Q , Xu J , Ge W , et al . EMMS-based discrete particle method (EMMS-DPM) for simulation of gas-solid flows[J]. Chemical Engineering Science, 2014, 120:67-87.
31 Gopalan B , Shahnam M , Panday R , et al . Measurements of pressure drop and particle velocity in a pseudo 2-D rectangular bed with Geldart group D particles[J]. Powder Technology, 2016, 291: 299-310.
32 Luo K , Yang S L , Fang M M , et al . LES-DEM investigation of the solid transportation mechanism in a 3-D bubbling fluidized bed(I): Hydrodynamics [J]. Powder Technology, 2014, 256: 385-394.
33 Link J M , Deen N G , Kuipers J A M , et al . PEPT and discrete particle simulation study of spout‐fluid bed regimes[J]. AIChE Journal, 2008, 54(5): 1189-1202.
34 Yang S L , Luo K , Fang M M , et al . Influences of operating parameters on the hydrodynamics of a 3-D spout-fluid bed based on DEM modeling approach [J]. Chemical Engineering Journal, 2014, 247: 161-173.
35 Wang S , Luo K , Hu C S , et al . Effect of superficial gas velocity on solid behaviors in a full-loop CFB [J]. Powder Technology, 2018, 333: 91-105.
36 Luo K , Wu F , Yang S L , et al . High-fidelity simulation of the 3-D full-loop gas-solid flow characteristics in the circulating fluidized bed [J]. Chemical Engineering Science, 2015, 123: 22-38.
37 燕兰玲, 蓝兴英, 吴迎亚, 等 . FCC提升管内气体流经颗粒聚团流动特性的模拟研究 [J]. 化学反应工程与工艺, 2014, 30(1): 41-47.
Yan L L , Lan X Y , Wu Y Y , et al . Numerical simulation of flow behavior of gas flowing through clusters in FCC risers [J]. Chemical Reaction Engineering and Technology, 2014, 30(1):41-47.
38 Li J , Cheng C , Zhang Z , et al . The EMMS model — its application, development and updated concepts [J]. Chemical Engineering Science, 1999, 54(22): 5409-5425.
39 陈程, 祁海鹰 . EMMS曳力模型及其颗粒团模型的构建和检验 [J]. 化工学报, 2014, 65(6): 2003-2012.
Chen C , Qi H Y . Development and validation of cluster and EMMS drag model[J]. CIESC Journal, 2014, 65(6): 2003-2012.
[1] TONG Ying, AHMAD Nouman, LU Bona, WANG Wei. Numerical investigation of bubbling fluidized bed with binary particle mixture using EMMS mesoscale drag model [J]. CIESC Journal, 2019, 70(5): 1682-1692.
[2] Wu SU, Xiaogang SHI, Yingya WU, Jinsen GAO, Xingying LAN. CFD simulation on hydrogenation of acetylene to ethylene in slurry bed [J]. CIESC Journal, 2019, 70(5): 1858-1867.
[3] Shunhao WANG, Wenli ZHU, Zhenggen HU, Rui ZHOU, Liu YU, Bin WANG, Xiaobin ZHANG. Numerical simulation and experimental validation of evaporation characteristics of scaled liquid hydrogen tank [J]. CIESC Journal, 2019, 70(3): 840-849.
[4] Chengzhen NI, Wenli DU, Guihua HU. Impact of turbulence model in coupled simulation of ethylene cracking furnace [J]. CIESC Journal, 2019, 70(2): 450-459.
[5] Rui MU, Gaoyang LE, Huizhong YANG. Estimation method of dissolved gas quantity in COD determination based on O3/UV [J]. CIESC Journal, 2019, 70(2): 730-735.
[6] Huahai ZHANG, Tiefeng WANG. Generality of CFD-PBM coupled model for simulations of gas-liquid bubble column [J]. CIESC Journal, 2019, 70(2): 487-495.
[7] Pan XIONG, Shuguang YAN, Weiyin LIU. Structure optimization of cyclone based on response surface method [J]. CIESC Journal, 2019, 70(1): 154-160.
[8] CHEN Liang, ZHAO Fan, YAN Guangjing, WANG Chunbo. Synergetic effect of H2O and SO2 on calcination kinetics of limestone during simultaneous calcination/sulfation reaction in CFB boilers [J]. CIESC Journal, 2018, 69(9): 3859-3868.
[9] HAN Tianyi, YAO Yuan, XU Jun, QI Liqiang, LI Jintao, TENG Fei. Synergetic mechanism of hygroscopic agent, surfactant and catalyst on desulfurization of flue gas circulating fluidized bed [J]. CIESC Journal, 2018, 69(9): 4044-4050.
[10] Zhou Yunlong, Lu Zhiye, WANG Meng. Recursive analysis and agglomerate state recognition of spray gas-solid fluidized bed [J]. CIESC Journal, 2018, 69(9): 3835-3842.
[11] CHEN Guoqi, SUN Jianjun, SUN Dianfeng, MA Chenbo. Performance analysis of double-end self-pumping mechanical seal for main coolant pump of sodium-cooled fast reactor [J]. CIESC Journal, 2018, 69(8): 3565-3576.
[12] HU Rentao, REN Libo, WANG Dewu, LIU Yan, ZHANG Shaofeng. Numerical simulation of fully developed liquid-solid flow in vertical narrow channel [J]. CIESC Journal, 2018, 69(8): 3408-3417.
[13] SUN Ziwen, CHEN Dailin, ZHONG Wenqi, YU Ai-Bing. MP-PIC simulation of particle clusters in fast fluidized bed risers [J]. CIESC Journal, 2018, 69(8): 3443-3451.
[14] WANG Yaxiong, YANG Jingxuan, ZHANG Zhonglin, MA Xuli, LI Peng, HAO Xiaogang, GUAN Guoqing. TBCFB system simulation and optimization for pyrolysis-gasification-combustion of low rank coal [J]. CIESC Journal, 2018, 69(8): 3596-3604.
[15] GU Xin, LUO Yuankun, XIONG Xiaochao, WANG Ke, TAO Zhilin. Influence of twisty flow heat exchanger's structural parameters on flow field and temperature field [J]. CIESC Journal, 2018, 69(8): 3390-3397.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LING Lixia, ZHANG Riguang, WANG Baojun, XIE Kechang. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] LEI Zhigang, LONG Aibin, JIA Meiru, LIU Xueyi. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] SU Haifeng, LIU Huaikun, WANG Fan, LÜXiaoyan, WEN Yanxuan. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] WANG Jianlin, XUE Yaoyu, YU Tao, ZHAO Liqiang. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] SUN Fubao, MAO Zhonggui, ZHANG Jianhua, ZHANG Hongjian, TANG Lei, ZHANG Chengming, ZHANG Jing, ZHAI Fangfang. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] Gao Ruichang, Song Baodong and Yuan Xiaojing( Chemical Engineering Research Center, Tianjin University, Tianjin 300072). LIQUID FLOW DISTRIBUTION IN GAS - LIQUID COUNTER - CONTACTING PACKED COLUMN[J]. , 1999, 50(1): 94 -100 .
[7] Su Yaxin, Luo Zhongyang and Cen Kefa( Institute of Thermal Power Engineering , Zhejiang University , Hangzhou 310027). A STUDY ON THE FINS OF HEAT EXCHANGERS FROM OPTIMIZATION OF ENTROPY GENERATION[J]. , 1999, 50(1): 118 -124 .
[8] Luo Xiaoping(Department of Industrial Equipment and Control Engineering , South China University of Technology, Guangzhou 510641)Deng Xianhe and Deng Songjiu( Research Institute of Chemical Engineering, South China University of Technology, Guangzhou 5106. RESEARCH ON FLOW RESISTANCE OF RING SUPPORT HEAT EXCHANGER WITH LONGITUDINAL FLUID FLOW ON SHELL SIDE[J]. , 1999, 50(1): 130 -135 .
[9] Jin Wenzheng , Gao Guangtu , Qu Yixin and Wang Wenchuan ( College of Chemical Engineering, Beijing Univercity of Chemical Technology, Beijing 100029). MONTE CARLO SIMULATION OF HENRY CONSTANT OF METHANE OR BENZENE IN INFINITE DILUTE AQUEOUS SOLUTIONS[J]. , 1999, 50(2): 174 -184 .
[10]

LI Qingzhao;ZHAO Changsui;CHEN Xiaoping;WU Weifang;LI Yingjie

.

Combustion of pulverized coal in O2/CO2 mixtures and its pore structure development

[J]. , 2008, 59(11): 2891 -2897 .