CIESC Journal ›› 2019, Vol. 70 ›› Issue (4): 1532-1541.doi: 10.11949/j.issn.0438-1157.20180928

• Energy and environmental engineering • Previous Articles     Next Articles

Influence of dynamic turbine efficiency on performance of organic Rankine cycle system

Peng LI(),Zhonghe HAN(),Xiaoqiang JIA,Zhongkai MEI,Xu HAN   

  1. 1. Key Laboratory of Condition Monitoring and Control for Power Plant Equipment, Ministry of Education, North China Electric Power University, Baoding 071003, Hebei, China
  • Received:2018-08-15 Revised:2019-01-04 Online:2019-04-05 Published:2019-01-04
  • Contact: Zhonghe HAN E-mail:pengli@ncepu.edu.cn;hanzhonghe@ncepu.edu.cn

Abstract:

The centripetal turbine efficiency varies greatly with the change of operating parameters and the type of working fluid, and a one-dimensional analysis model of radial-inflow turbine is introduced. The effects of evaporation and condensation temperature on the turbine efficiency were investigated, and a comparative analysis on thermodynamic and economic performances of the organic Rankine cycle (ORC) system with constant turbine efficiency and dynamic turbine efficiency was presented. NSGA-Ⅱ is employed to conduct multi-objective optimization of ORC system, which was to select the optimal working fluid and determine the optimal evaporation and condensation temperature. Meanwhile, the optimal operating parameters of ORC system with constant and dynamic turbine efficiency were compared, and the variation of turbine efficiency with heat source temperature was studied. The results show that the turbine efficiency increases with the decrement of evaporation temperature or the increment of condensation temperature. After introducing dynamic turbine efficiency, the increment of net power output with increasing evaporation temperature slows down, and the sequence order of some working fluids changed. The optimal working fluid and the optimal operating parameters are different between ORC system with constant and dynamic turbine efficiency, which indicates that constant turbine efficiency will cause errors in selection of optimal working fluids and determination of operating parameters. As the heat source inlet temperature raises, the difference of optimal evaporation temperature and net power output between the ORC system with constant and dynamic turbine efficiency increases. The higher heat source inlet temperature is, the greater error caused by adopting constant turbine efficiency will be.

Key words: organic Rankine cycle, constant turbine efficiency, dynamic turbine efficiency, multi-objective optimization

CLC Number: 

  • TK 123

Fig.1

Schematic diagram of basic ORC system"

Fig.2

T-s diagram of basic ORC system"

Fig.3

h-s diagram of radial-inflow turbine"

Fig.4

Velocity triangles of radial-flow turbine"

Fig.5

Velocity ratio-degree of reaction curves of radial-flow turbine"

Table 1

Initial parameters for radial-inflow turbine"

Parameter Symbol Value
nozzle velocity coefficient ? 0.95
rotor blade velocity coefficient ψ 0.85
ratio of wheel diameter D r 0.5
absolute velocity angle at rotor inlet α 1 15
relative velocity angle at rotor outlet β 2 30

Fig.6

Flowchart of NSGA-Ⅱ"

Table 2

Cycle and economic parameters for simulation of ORC system"

Parameter Value
heat source inlet temperature/K 433.15
heat source outlet temperature/K 363.15
amount of waste heat/MW 1
ambient temperature/K 293.15
ambient pressure/MPa 1.01
pump isentropic efficiency/% 80
interest rate/% 10
plant economic life/a 20
annual plat operation time/h 7000

Table 3

Properties of working fluid candidates"

Working fluid Molar mass/(g·mol-1) Normal boiling point/K Critical pressure/MPa Critical temperature/K
R236ea 152.039 279.34 3.502 412.44
R114 170.921 276.741 3.257 418.83
R245fa 134.048 288.29 3.651 427.16
R245ca 134.049 298.28 3.925 447.57
R123 152.931 300.973 3.662 456.831
isopentane 72.149 300.98 3.378 460.35
pentane 72.149 309.21 3.37 469.7
cyclohexane 84.161 353.886 4.075 553.64

Fig.7

Comparison of predicted turbine efficiency and experimental data"

Fig.8

Variation of turbine efficiency with evaporation temperature"

Fig.9

Variation of turbine efficiency with condensation temperature"

Fig.10

Variation of net power output with evaporation temperature"

Fig.11

Pareto frontier results of different working fluids for ORC system with constant turbine efficiency"

Fig.12

Pareto frontier results of different working fluids for ORC system with dynamic turbine efficiency"

Fig.13

Variation of optimal evaporation and condensation temperature with heat source inlet temperature"

Fig.14

Variation of turbine efficiency with heat source inlet temperature"

Fig.15

Variation of net power output with heat source inlet temperature"

1 Saloux E , Sorin M , Nesreddine H , et al . Reconstruction procedure of the thermodynamic cycle of organic Rankine cycles (ORC) and selection of the most appropriate working fluid[J]. Applied Thermal Engineering, 2018, 129: 628-635.
2 吴玉庭, 赵英昆, 雷标, 等 . 冷却水流量对ORC系统性能影响的实验研究[J].化工学报, 2018, 69(6): 2639-2645.
Wu Y T , Zhao Y K , Lei B , et al . Effect of cooling water flow rate on power generation of organic Rankine cycle system[J]. CIESC Journal, 2018, 69(6): 2639-2645.
3 Frutiger J , Andreasen J , Liu W , et al . Working fluid selection for organic Rankine cycles – impact of uncertainty of fluid properties[J]. Energy, 2016, 109: 987-997.
4 许俊俊, 罗向龙, 王永真, 等 . ORC工质选择的多级非结构性模糊决策分析[J]. 化工学报, 2015, 66(3): 1051-1058.
Xu J J , Luo X L , Wang Y Z , et al . Optimum selection of ORC working fluid using multi-level fuzzy optimization and non-structural fuzzy decision[J]. CIESC Journal, 2015, 66(3): 1051-1058.
5 Wang E H , Zhang H G , Fan B Y , et al . Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery[J]. Energy, 2011, 36(5): 3406-3418.
6 顾煜炯, 耿直, 谢典 . 太阳能有机朗肯循环系统性能分析及综合评价[J]. 太阳能学报, 2018, 39(2): 482-490.
Gu Y J , Geng Z , Xie D . Performance analysis and comprehensive evaluation of organic Rankine cycle system driven by solar energy[J]. Acta Energiae Solaris Sinica, 2018, 39(2): 482-490.
7 El-Emam R S , Dincer I . Exergy and exergoeconomic analyses and optimization of geothermal organic Rankine cycle[J]. Applied Thermal Engineering, 2013, 59(1/2): 435-444.
8 Li Y R , Du M T , Wu C M , et al . Economical evaluation and optimization of subcritical organic Rankine cycle based on temperature matching analysis[J]. Energy, 2014, 68(5): 238-247.
9 Han Z H , Li P , Han X , et al . Thermo-economic performance analysis of a regenerative superheating organic Rankine cycle for waste heat recovery[J]. Energies, 2017, 10(10): 1593.
10 王漫, 王江峰, 阎哲泉, 等 . 有机工质低温余热发电系统多目标优化设计[J]. 动力工程学报, 2013, 33(4): 387-392.
Wang M , Wang J F , Yan Z Q , et al . Multi-objective optimization of low-temperature waste-heat ORC power generation systems[J]. Journal of Chinese Society of Power Engineering, 2013, 33(5): 387-392.
11 王华荣, 徐进良 . 采用BP-GA算法的有机朗肯循环多目标优化[J]. 中国电机工程学报, 2016, 36(12): 3168-3175.
Wang H R , Xu J L . Multi-objective optimization for organic Rankine cycle using BP-GA algorithm[J]. Proceedings of the CSEE, 2016, 36(12): 3168-3175.
12 Zhang S , Wang H , Tao G , et al . Performance comparison and parametric optimization of subcritical organic Rankine cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation[J]. Applied Energy, 2011, 88(8): 2740-2754.
13 Özahi E , Tozlu A , Abuşoğlu A . Thermoeconomic multi-objective optimization of an organic Rankine cycle (ORC) adapted to an existing solid waste power plant[J]. Energy Conversion and Management, 2018, 168: 308-319.
14 Rayegan R , Tao Y X . A procedure to select working fluids for solar organic Rankine cycles (ORCs)[J]. Renewable Energy, 2011, 36(2): 659-670.
15 Wang Y Z , Zhao J , Wang Y , et al . Multi-objective optimization and grey relational analysis on configurations of organic Rankine cycle[J]. Applied Thermal Engineering, 2017, 114: 1355-1363.
16 Yekoladio P J , Bello-Ochende T , Meyer J P . Thermodynamic analysis and performance optimization of organic Rankine cycles for the conversion of low‐to‐moderate grade geothermal heat[J]. International Journal of Energy Research, 2015, 39(9): 1256-1271.
17 Garg P , Orosz M S . Economic optimization of organic Rankine cycle with pure fluids and mixtures for waste heat and solar applications using particle swarm optimization method[J]. Energy Conversion and Management, 2018, 165: 649-668.
18 Sun J , Li W . Operation optimization of an organic Rankine cycle (ORC) heat recovery power plant[J]. Applied Thermal Engineering, 2011, 31(11): 2032-2041.
19 Song J , Gu C W , Ren X . Influence of the radial-inflow turbine efficiency prediction on the design and analysis of the organic Rankine cycle (ORC) system[J]. Energy Conversion and Management, 2016, 123: 308-316.
20 Song J , Gu C W , Ren X . Parametric design and off-design analysis of organic Rankine cycle (ORC) system[J]. Energy Conversion and Management, 2016, 112: 157-165.
21 Zhai L , Xu G , Wen J , et al . An improved modeling for low-grade organic Rankine cycle coupled with optimization design of radial-inflow turbine[J]. Energy Conversion and Management, 2017, 153: 60-70.
22 Dong B , Xu G , Li T , et al . Parametric analysis of organic Rankine cycle based on a radial turbine for low-grade waste heat recovery[J]. Applied Thermal Engineering, 2017, 126: 470-479.
23 Bejan A , Tsatsaronis G , Moran M , et al . Thermal Design and Optimization[M]. John Wiley & Sons, 1996.
24 Xiao L , Wu S Y , Yi T T , et al . Multi-objective optimization of evaporation and condensation temperatures for subcritical organic Rankine cycle[J]. Energy, 2015, 83: 723-733.
25 李燕生, 陆桂林 . 向心透平与离心压气机[M]. 北京:机械工业出版社, 1987.
Li Y S , Lu G L . Radial-inflow Turbine and Centrifugal Compressor[M]. Beijing: China Machine Press, 1987.
26 舒士甄, 朱力, 柯玄龄, 等 . 叶轮机械原理[M]. 北京: 清华大学出版社, 1991.
Shu S Z , Zhu L , Ke X L , et al . Fluid Mechanics and Thermodynamics of Turbomachinery[M]. Beijing: Tsinghua University Press, 1991.
27 Han Z H , Fan W , Zhao R C . Improved thermodynamic design of organic radial-inflow turbine and ORC system thermal performance analysis[J]. Energy Conversion and Management, 2017, 150: 259-268.
28 陈奇成, 徐进良, 苗政 . 中温热源驱动有机朗肯循环工质研究[J]. 中国电机工程学报, 2013, 33(32): 1-7.
Chen Q C , Xu J L , Miao Z . Working fluid selection for medium temperature organic Rankine cycle[J]. Proceedings of the CSEE, 2013, 33(32): 1-7.
29 Chen Q , Xu J , Chen H . A new design method for Organic Rankine cycles with constraint of inlet and outlet heat carrier fluid temperatures coupling with the heat source[J]. Applied Energy, 2012, 98: 562-573.
30 Jones A C . Design and test of a small, high pressure ratio radial turbine[J]. Journal of Turbomachinery, 1996, 118(2): 362-370.
31 Feng Y , Hung T C , Greg K , et al . Thermoeconomic comparison between pure and mixture working fluids of organic Rankine cycles (ORCs) for low temperature waste heat recovery[J]. Energy Conversion and Management, 2015, 106: 859-872.
[1] Yuting CHEN, Yanyan XU, Lei WANG, Shuang YE, Weiguang HUANG. Effect of evaporator heat transfer process on selection of mixture and operating condition in ORC system [J]. CIESC Journal, 2019, 70(5): 1723-1733.
[2] YOU Huailiang, HAN Jitian, LIU Yang. Thermodynamic analysis of micro tri-generation system based on SOFC/MGT/ORC [J]. CIESC Journal, 2018, 69(S2): 300-308.
[3] PAN Quanwen, WANG Ruzhu. Analysis on performance of thermally driven cooling and power cogeneration system with dual working mode [J]. CIESC Journal, 2018, 69(S2): 373-378.
[4] HAN Zhonghe, MEI Zhongkai, LI Peng. Working fluid selection and multi-objective optimization of organic Rankine cycle with variable turbine efficiency [J]. CIESC Journal, 2018, 69(6): 2603-2611.
[5] WU Yuting, ZHAO Yingkun, LEI Biao, MENG Qingpeng, CHEN Rumeng, ZHI Ruiping, MA Chongfang. Effect of cooling water flow rate on power generation of organic Rankine cycle system [J]. CIESC Journal, 2018, 69(6): 2639-2645.
[6] HUANG Renlong, LUO Xianglong, LIANG Zhihui, CHEN Ying. Multi-objective optimization of Rankine cycle using R245fa/pentane based on liquid-vapor separation [J]. CIESC Journal, 2018, 69(5): 2040-2048.
[7] WANG Menghan, TU Shunli, YU Chunli. Optimization strategy of weld line assisted by air traps improvement based on Kriging and NSGA-Ⅱ [J]. CIESC Journal, 2018, 69(10): 4449-4455.
[8] ZHANG Hongguang, YANG Yuxin, MENG Fanxiao, ZHAO Rui, TIAN Yaming, LIU Yi. Running performance of working fluid pump for organic Rankine cycle system [J]. CIESC Journal, 2017, 68(9): 3573-3579.
[9] QIU Yang, PAN Zhen, LI Ping, YANG Fan, PANG Tianlong, CHEN Shujun. An LNG cold energy utilization system combined with power generation and natural gas re-liquefaction [J]. CIESC Journal, 2017, 68(9): 3580-3591.
[10] CHAI Junlin, TIAN Rui, YANG Fubin, ZHANG Hongguang. Thermo-economic comparative analysis of different organic Rankine cycle system schemes for vehicle diesel engine waste heat recovery [J]. CIESC Journal, 2017, 68(8): 3258-3265.
[11] YANG Deming, GU Qiang, ZHU Biyun, WANG Zhengguang, YIN Yifan, GAO Xiaoxin. MVR heat pump distillation process of mixed xylene based on organic Rankine cycle [J]. CIESC Journal, 2017, 68(12): 4641-4648.
[12] LIU Huanwei. Cooling performances of gas engine heat pump system and analysis of waste heat utilization [J]. CIESC Journal, 2017, 68(1): 50-56.
[13] CHEN Jun, ZHOU Weiguo, WANG Hai, LI Su. Multi-objective optimal strategy for steam power system in steel industry based on electricity equivalent calculation [J]. CIESC Journal, 2016, 67(9): 3804-3811.
[14] HUA Changchun, WANG Yajie, LI Junpeng, TANG Yinggan, LU Zhigang, Guan Xinping. Multi-objective optimization model for blast furnace production and ingredients based on NSGA-Ⅱ algorithm [J]. CIESC Journal, 2016, 67(3): 1040-1047.
[15] WANG Mengying, FENG Xiao, WANG Yufei. Comparison of energy performance of organic Rankine and Kalina cycles considering different waste heat sources [J]. CIESC Journal, 2016, 67(12): 5089-5097.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LING Lixia, ZHANG Riguang, WANG Baojun, XIE Kechang. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] LEI Zhigang, LONG Aibin, JIA Meiru, LIU Xueyi. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] SU Haifeng, LIU Huaikun, WANG Fan, LÜXiaoyan, WEN Yanxuan. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] WANG Jianlin, XUE Yaoyu, YU Tao, ZHAO Liqiang. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] SUN Fubao, MAO Zhonggui, ZHANG Jianhua, ZHANG Hongjian, TANG Lei, ZHANG Chengming, ZHANG Jing, ZHAI Fangfang. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] Gao Ruichang, Song Baodong and Yuan Xiaojing( Chemical Engineering Research Center, Tianjin University, Tianjin 300072). LIQUID FLOW DISTRIBUTION IN GAS - LIQUID COUNTER - CONTACTING PACKED COLUMN[J]. , 1999, 50(1): 94 -100 .
[7] Su Yaxin, Luo Zhongyang and Cen Kefa( Institute of Thermal Power Engineering , Zhejiang University , Hangzhou 310027). A STUDY ON THE FINS OF HEAT EXCHANGERS FROM OPTIMIZATION OF ENTROPY GENERATION[J]. , 1999, 50(1): 118 -124 .
[8] Luo Xiaoping(Department of Industrial Equipment and Control Engineering , South China University of Technology, Guangzhou 510641)Deng Xianhe and Deng Songjiu( Research Institute of Chemical Engineering, South China University of Technology, Guangzhou 5106. RESEARCH ON FLOW RESISTANCE OF RING SUPPORT HEAT EXCHANGER WITH LONGITUDINAL FLUID FLOW ON SHELL SIDE[J]. , 1999, 50(1): 130 -135 .
[9] Jin Wenzheng , Gao Guangtu , Qu Yixin and Wang Wenchuan ( College of Chemical Engineering, Beijing Univercity of Chemical Technology, Beijing 100029). MONTE CARLO SIMULATION OF HENRY CONSTANT OF METHANE OR BENZENE IN INFINITE DILUTE AQUEOUS SOLUTIONS[J]. , 1999, 50(2): 174 -184 .
[10]

LI Qingzhao;ZHAO Changsui;CHEN Xiaoping;WU Weifang;LI Yingjie

.

Combustion of pulverized coal in O2/CO2 mixtures and its pore structure development

[J]. , 2008, 59(11): 2891 -2897 .