CIESC Journal ›› 2019, Vol. 70 ›› Issue (1): 146-153.doi: 10.11949/j.issn.0438-1157.20180911

• Separation engineering • Previous Articles     Next Articles

Screening of ionic liquids for separation of ethyl acetate-acetonitrile azeotrope based on COSMO-RS

Zhigang ZHANG(),Debiao ZHANG,Qinqin ZHANG(),Tao ZHANG,Ru YANG,Wenxiu LI   

  1. School of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China
  • Received:2018-08-13 Revised:2018-10-15 Online:2019-01-05 Published:2018-10-18
  • Contact: Qinqin ZHANG E-mail:zhzhgang@126.com;zhangshoudao@126.com

Abstract:

The application of different ionic liquids in the separation of acetate-acetonitrile azeotrope was investigated by COSMO-RS method. The accuracy of COSMO-thermX prediction of ionic liquid separation was verified by comparison between predicted and experimental values. The selectivity (based on acetonitrile) of 221 ionic liquids composed of 17 cations and 13 anions and the effect of ionic liquids on the relative volatility of ethyl acetate to acetonitrile near azeotropic point were calculated and analyzed. It was found that the ionic liquids containing [OAc]- and [Cl]- had a better promoting effect on the separation of ethyl acetate - acetonitrile mixture, while the difference in the promoting effect of cations on the separation of ethyl acetate - acetonitrile mixture was small. The effect of anions [OAc]- and [Cl]- on azeotrope was further studied by applying the surface charge density distribution (σ-profile), revealing that the order of influence of the anions [OAc]- and [Cl]- on the separation of ethyl acetate-acetonitrile was [OAc]->[Cl]-. The comprehensive prediction results show that ionic liquid [BMIM][OAc] is expected to be used as a highly efficient extractant in the separation of ethyl acetate-acetonitrile mixture.

Key words: ethylacetate, acetonitrile, ionic liquid, COSMO-RS model, selectivity

CLC Number: 

  • TQ 013.1

Fig.1

Vapor-liquid equilibrium diagram for binary system of ethyl acetate(1) + acetonitrile(2) at 101.3 kPa"

Fig.2

Vapor-liquid equilibrium data of ethyl acetate (1)-acetonitrile (2)-ionic liquids (3) ternary system at 101.3 kPa"

Table 1

Names and abbreviations of anions and cations in ionic liquids"

阳离子简称阴离子简称

1,3-methyl-imidazolium

1-ethyl-3-methyl-imidazolium

1-butyl-3-methyl-imidazolium

1-hexyl-3-methyl-imidazolium

1-octyl-3-methyl-imidazolium

1-ethyl-2-3-methyl-imidazolium

1-butyl-2-3-methyl-imidazolium

1-hexyl-2-3-methyl-imidazolium

tetra-methylammonium

tetra-ethylammonium

tetrabutyl-phosphonium

triisobutyl-methyl-phosphonium

ethyl-pyridinium

1-ethyl-pyridinium

1-butyl-pyridinium

1-ethyl-3-methylpyridinium

1-butyl-3-methyl-pyridinium

[MMIM]

[EMIM]

[BMIM]

[HMIM]

[OMIM]

[EMMIM]

[BMMIM]

[HMMIM]

[N1111]

[N2222]

[P4444]

[P4441]

[MPY]

[EPY]

[BPY]

[EMPY]

[BMPY]

Cl

Br

I

NO3

BF4

dimethylphosphate

diethylphosphate

dibutylphosphate

PF6

methylsulfate

ethylsulfate

bis[(trifluoromethyl)sulfonyl]imide

acetate

[Cl]

[Br]

[I]

[NO3]

[BF4]

[DMP]

[DEP]

[DBP]

[PF6]

[MeSO4]

[EtSO4]

[Tf2N]

[OAc]

Fig.3

Selective prediction of ethyl acetate and acetonitrile systems by different ionic liquids"

Fig.4

Relative volatility of ethyl acetate (1) + acetonitrile (2) + anions are [OAc]?, [Cl]?, [Tf2N]? ionic liquid at 101.3 kPa"

Fig.5

σ-profile of ethylacetate, acetonitrile, [BMIM]+, [OAc]? and [Cl]?"

Fig.6

Isobaric VLE diagram for ternary system of ethyl acetate (1) + acetonitrile (2)+ [BMIM][OAC] (3) at 101.3 kPa"

Fig.7

Comparison of effects of different ionic liquids(3) on isobaric vapor-liquid equilibrium of ethyl acetate(1)-acetonitrile(2) system at x3≈0.15 mol"

1 王晓红, 田光珍, 谢力, 等. 萃取精馏分离乙酸乙酯-乙腈共沸物系的优化与控制研究[J]. 青岛科技大学学报(自然科学版),2017, 38(4): 71-77.
WangX H, TianG Z, XieL, et al. Design and control of extractive distillation for separating ethyl acetate-acetonitrile azeotropic systems [J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2017, 38(4): 71-77.
2 丁邦琴, 张双, 李卓, 等. 乙酸乙酯-乙腈-1-乙基-3-甲基咪唑三氟甲磺酸盐物系等压气液平衡数据的测定[J]. 石油化工, 2014, 43(12): 1405-1409.
DingB Q, ZhangS, LiZ, et al. Isobaric vapor-liquid equilibrium for ethyl acetate-acetonitrile-1-ethyl-3-methylimidazolium trifluoromethanesulfonate ternary system [J]. Petrochemical Technology, 2014, 43(12): 1405-1409.
3 迪建东. 间歇共沸精馏分离乙腈和乙酸乙酯混合物的研究[D]. 天津: 天津大学, 2006.
DiJ D. Study on separation of acetonitrile and ethylacetate mixture by batch zeotropic distillation [D]. Tianjin: Tianjin University, 2006.
4 马文婵, 孙建杰, 魏洪普, 等. 萃取法分离乙腈、乙酸乙酯和水混合物的研究[J]. 应用化工, 2010, 39(6): 781-782.
MaW C, SunJ J, WeiH P, et al. Study on separation of acetonitrile and ethylacetate mixture by extractive distillation [J]. Applied Chemical Industry, 2010, 39(6): 781-782.
5 丁邦琴, 张双, 许文, 等. 乙酸乙酯-乙腈-1-丁基-3-甲基咪唑三氟甲磺酸盐物系等压气液平衡数据的测定及关联[J]. 北京化工大学学报(自然科学版), 2014, 41(6): 42-46.
DingB Q, ZhangS, XuW, et al. Isobaric vapor-liquid equilibrium for ethyl acetate-acetonitrile-1-butyl-3-methylimidazolium trifluoromethanesulfonate ternary system [J]. Journal of Beijing University of Chemical Technology (Natural Science), 2014, 41(6): 42-46.
6 FangJ, ZhaoR, SuW Y, et al. A molecular design method based on the COSMO-SAC model for solvent selection in ionic liquid extractive distillation [J]. AIChE Journal, 2016, 62(8): 2853-2869.
7 ZhangL Z, HanJ, DengD, et al. Selection of ionic liquids as entrainers for separation of water and 2-propanol [J]. Fluid Phase Equilibria, 2007, 255(2): 179-185.
8 SeilerM, JorkC, KavarnouA, et al. Separation of azeotropic mixtures using hyperbranched polymers or ionic liquids [J]. AIChE Journal, 2004, 50(10): 2439-2454.
9 CalvarN, GonzálezB, GómezE, et al. Study of the behaviour of the azeotropic mixture ethanol-water with imidazolium-based ionic liquids [J]. Fluid Phase Equilibria, 2007, 259(1): 51-56.
10 SimoniL D, FickeL E, LambertC A, et al. Measurement and prediction of vapor-liquid equilibrium of aqueous 1-ethyl-3-methylimidazolium-based ionic liquid systems [J]. Industrial and Engineering Chemistry Research, 2010, 49(8): 3893-3901.
11 ZhangY, YuD, GuoF, et al. Vapor-liquid equilibria measurement of (methanol + ethanenitrile + bis(trifluoromethylsulfonyl) imide)-based ionic liquids at 101. 3 kPa [J]. Journal of Chemical and Engineering Data, 2016, 61(7): 2202-2208.
12 李瑞, 崔现宝, 吴添, 等. 基于COSMO-SAC模型的离子液体萃取剂的选择[J]. 化工学报, 2013, 64(2): 452-469.
LiR, CuiX B, WuT, et al. Selection of ionic liquid solvent for liquid-liquid extraction based on COSMO-SAC model [J]. CIESC Journal, 2013, 64(2): 452-469.
13 曹玲, 李群生. 乙酸乙酯-乙腈-1-辛基-3-甲基咪唑六氟磷酸盐物系等压气液相平衡数据的测定与关联[J]. 石油化工, 2016, 45(2): 194-199.
CaoL, LiQ S. Isobaric vapor-liquid equilibrium for ethyl acetate-acetonitrile-1-octyl-3- methylimidazolium hexafluorophosphate system [J]. Petrochemical Technology, 2016, 45(2): 194-199.
14 LiQ S, CaoL. Isobaric vapor-liquid equilibrium for ethyl acetate + acetonitrile + 1-butyl-3-methylimidazolium hexafluorophos-phate at 101. 3 kPa [J].Chem J.Eng.Data, 2013, 58(5): 1112-1116.
15 ZhuJ J, LiQ S, LiM, et al. The isobaric vapor liquid equilibria of ethyl acetate + acetonitrile + bis (trifluoromethylsulfonyl) imide-based ionic liquids at 101. 3kPa [J]. Fluid Phase Equilibria, 2016, 425: 289-296.
16 KlamtA, JonasV, BurgerT. Refinement and parametrization of COSMO-RS [J]. Journal of Physical Chemistry A, 1998, 102(26): 5074-5085.
17 KlamtA. Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena [J]. Journal of Physical Chemistry, 1995, 99(7): 2224-2235.
18 BanerjeeT, SinghM K, KhannaA. Prediction of binary VLE for imidazolium based ionic liquid systems using COSMO-RS [J]. Industrial & Engineering Chemistry Research, 2006, 45(9): 3207-3219.
19 KlamtA. The COSMO and COSMO-RS solvation models [J]. Wiley Interdisciplinary Reviews Computational Molecular Science, 2011, 1(10): 699-709.
20 顾丽莉, 代文阳, 郭小涛. COSMO-RS筛选桉叶油萃取精馏的离子液体[J]. 化学工程, 2016, 44(3): 15-21.
GuL L, DaiW Y, GuoX T. COSMO-RS based ionic-liquid selection for extractive distillation of eucalyptus oil [J]. Chemical Engineering (China), 2016, 44(3): 15-21.
21 ZhangZ G, ZhangL, ZhangQ, et al. Separation of 2-propanol and water azeotropic system using ionic liquids as entrainers [J]. Fluid Phase Equilibria, 2016, 412: 94-100.
22 LeiZ G, DaiC, ZhuJ, et al. Extractive distillation with ionic liquids: a review [J]. AIChE Journal, 2014, 60(9): 3312-3329.
23 LiJ L, YangX Q, ChenK X, et al. Sifting ionic liquids as additives for separation of acetonitrile and water azeotropic mixture using the COSMO-RS method [J]. Industrial and Engineering Chemistry Research, 2012, 51(27): 9376-9385.
24 LiT T, YangQ, DingH R, et al. Amino acid based ionic liquids as additives for the separation of an acetonitrile and water azeotropic mixture: COSMO-RS prediction and experimental verification [J]. Industrial and Engineering Chemistry Research, 2015, 54: 12143-12149.
25 DhanalakshmiJ, SaiP S T, BalakrishnanA R. Study of ionic liquids as entrainers for the separation of methyl acetate-methanol and ethyl acetate-ethanol systems using the COSMO-RS model [J]. Industrial and Engineering Chemistry Research, 2013, 52 (46): 16396-16405.
26 李骏, 何文军, 漆志文, 等. 基于COSMO-RS的分离甲醇-碳酸二甲酯的离子液体溶剂筛选[J]. 石油化工, 2016, 45(12): 1499-1505.
LiJ, HeW J, QiZ W, et al. Screening ionic liquids for separation of methanol and dimethyl-carbonate mixtures based on COSMO-RS method [J]. Petrochemical Technology, 2016, 45(12): 1499-1505.
27 FreireM G, SantosL M, MarruchoI M, et al. Evaluation of COSMO-RS for the prediction of LLE and VLE of alcohols+ionic liquids [J]. Fluid Phase Equilibria, 2007, 255(2): 167-178.
28 ZhengZ Q, WuT H, ZhouX P. The synthesis of quaternary ammonium salts from ammonium salts and dialkyl carbonate [J]. Chemical Communications, 2006, 17(17): 1864-1865.
29 杨小倩, 何昌春, 陈科侠, 等. 基于COSMO-RS方法筛选易于乙腈-水分离的离子液体[J]. 化工进展, 2011, 30(s2): 55-61.
YangX Q, HeC C, ChenK X, et al. Screening ionic liquids for separation of acetonitrile and water mixtures based on COSMO-RS method [J]. Chemical Industry and Engineering Progress, 2011, 30(s2): 55-61.
30 ZhangZ G, WuK F, ZhangQ Q, et al. Separation of ethyl acetate and ethanol azeotrope mixture using dialkylphosphates-based ionic liquids as entrainers [J]. Fluid Phase Equilibria, 2017, 454: 91-98.
31 李婷婷, 杨青, 彭昌军, 等. 基于COSMO - RS模型研究基团修饰[EMIM][OAc]的离子液体对乙腈-水汽液平衡的影响[J]. 化工学报, 2016, 67(2): 426-434.
LiT T, YangQ, PengC J, et al. Functionalized ionic liquids based on [EMIM][OAc] for vapor-liquid phase equilibrium of acetonitrile and water by COSMO-RS method [J]. CIESC Journal, 2016, 67(2): 426-434.
[1] Fengteng HU, Jianlong YAO, Xiaoqing LI, Sihan LI, Xinhuan YAN. Properties of Sr modified Cu-based catalysts for hydrogenation of fructose to mannitol [J]. CIESC Journal, 2019, 70(4): 1420-1428.
[2] Shaojuan ZENG, Dawei SHANG, Min YU, Hao CHEN, Haifeng DONG, Xiangping ZHANG. Applications and perspectives of NH3 separation and recovery with ionic liquids [J]. CIESC Journal, 2019, 70(3): 791-800.
[3] SUN Yanjun, DI Gaolei, XIA Juan, WANG Xiaopo, JIN Liwen. Thermodynamic analysis of absorption refrigeration cycles using ionic liquids as absorbents [J]. CIESC Journal, 2018, 69(S2): 38-44.
[4] HAN Ruitao, ZHAO Lei, TANG Erjun, ZHAO Xiongyan, ZHAO Congsi. Preparation of cellulose antimicrobial materials grafted halamnie by ATRP [J]. CIESC Journal, 2018, 69(S1): 155-160.
[5] LIU Yan, XIA Tiantian, SUN Weishi, WAN Yinhua, SHEN Fei, DENG Huining. Electrodialysis-vacuum membrane distillation integrated process to concentrate ionic liquids [J]. CIESC Journal, 2018, 69(9): 3905-3913.
[6] XU Lingjun, WANG Shujuan. Vapor liquid equilibria and heat of desorption of CO2 in aqueous mixture of[Bmim] [BF4] and MEA [J]. CIESC Journal, 2018, 69(9): 3879-3886.
[7] GAO Jing, ZHENG Caiju, TAN Tingru, ZHANG Di, LIU Shucheng, JI Hongwu. Effect of ionic liquid micro emulsion pretreatment on rice straw at ultra-high pressure [J]. CIESC Journal, 2018, 69(8): 3686-3692.
[8] LI Jia, GU Jinghua, YIN Wenjie, LI Zeyao. Preparation of ZIF-8 membranes on ZnO modified stainless steel nets [J]. CIESC Journal, 2018, 69(8): 3724-3731.
[9] DU Haiyan, XU Yuyu, REN Zhe, YANG Huimin. Microwave-induced imidazole poly(ionic liquid)/poly(vinyl alcohol) shape memory materials [J]. CIESC Journal, 2018, 69(7): 3279-3285.
[10] HUANG Pan, LIU Zhen, SHAO Yunqi, DENG Shifeng, LIU Boping. Influences of organic additives on inhibiting by-products in zinc-catalyzed synthesis of alkynylsilane [J]. CIESC Journal, 2018, 69(7): 2993-3000.
[11] LI Yannan, CHENG Jun, LIU Jianzhong, ZHOU Junhu, CEN Kefa. CO2removal from biohythane by absorption in ionic liquid[P66614][Triz]loaded on molecular sieve SBA-15 [J]. CIESC Journal, 2018, 69(6): 2526-2532.
[12] ZHANG Wenlin, YAN Jiawei, SUN Tengfei, ZHANG Bin, LAN Xiaoyan, LI Chunli. COSMO-SAC molecular screening method to analyze imidazole ionic liquids for toluene vapor absorption [J]. CIESC Journal, 2018, 69(5): 1829-1839.
[13] ZHANG Jianli, WANG Xu, MA Liping, YU Xufei, MA Qingxiang, FAN Subing, ZHAO Tiansheng. Preparation of modified MgFeMn-HTLcs and catalytic performance in CO hydrogenation [J]. CIESC Journal, 2018, 69(5): 2073-2080.
[14] ZHAO Shuwei, HE Tao, LI Xuemei, GAO Congjie, HO Kyong Shon, NGHIEM Long D, ELIMELECH Menachem. Highlights of international forward osmosis technology symposium (IFOS2016): is forward osmosis feasible? [J]. CIESC Journal, 2018, 69(4): 1255-1260.
[15] MAO Ming, LENG Erwei, GONG Xun, XU Minghou. Conversion of cellulose into 5-hydroxymehylfurfural catalyzed by CrCl3-AlCl3 [J]. CIESC Journal, 2018, 69(2): 801-807.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LING Lixia, ZHANG Riguang, WANG Baojun, XIE Kechang. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] LEI Zhigang, LONG Aibin, JIA Meiru, LIU Xueyi. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] SU Haifeng, LIU Huaikun, WANG Fan, LÜXiaoyan, WEN Yanxuan. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] WANG Jianlin, XUE Yaoyu, YU Tao, ZHAO Liqiang. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] SUN Fubao, MAO Zhonggui, ZHANG Jianhua, ZHANG Hongjian, TANG Lei, ZHANG Chengming, ZHANG Jing, ZHAI Fangfang. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] Gao Ruichang, Song Baodong and Yuan Xiaojing( Chemical Engineering Research Center, Tianjin University, Tianjin 300072). LIQUID FLOW DISTRIBUTION IN GAS - LIQUID COUNTER - CONTACTING PACKED COLUMN[J]. , 1999, 50(1): 94 -100 .
[7] Su Yaxin, Luo Zhongyang and Cen Kefa( Institute of Thermal Power Engineering , Zhejiang University , Hangzhou 310027). A STUDY ON THE FINS OF HEAT EXCHANGERS FROM OPTIMIZATION OF ENTROPY GENERATION[J]. , 1999, 50(1): 118 -124 .
[8] Luo Xiaoping(Department of Industrial Equipment and Control Engineering , South China University of Technology, Guangzhou 510641)Deng Xianhe and Deng Songjiu( Research Institute of Chemical Engineering, South China University of Technology, Guangzhou 5106. RESEARCH ON FLOW RESISTANCE OF RING SUPPORT HEAT EXCHANGER WITH LONGITUDINAL FLUID FLOW ON SHELL SIDE[J]. , 1999, 50(1): 130 -135 .
[9] Jin Wenzheng , Gao Guangtu , Qu Yixin and Wang Wenchuan ( College of Chemical Engineering, Beijing Univercity of Chemical Technology, Beijing 100029). MONTE CARLO SIMULATION OF HENRY CONSTANT OF METHANE OR BENZENE IN INFINITE DILUTE AQUEOUS SOLUTIONS[J]. , 1999, 50(2): 174 -184 .
[10]

LI Qingzhao;ZHAO Changsui;CHEN Xiaoping;WU Weifang;LI Yingjie

.

Combustion of pulverized coal in O2/CO2 mixtures and its pore structure development

[J]. , 2008, 59(11): 2891 -2897 .