CIESC Journal ›› 2019, Vol. 70 ›› Issue (2): 736-749.doi: 10.11949/j.issn.0438-1157.20180842
Previous Articles Next Articles
CLC Number:
1 | QinS J. Statistical process monitoring: basics and beyond [J]. Journal of Chemometrics, 2003, 17(8/9): 480-502 |
2 | GeZ Q, SongZ H, GaoF R. Review of recent research on data-based process monitoring [J]. Industrial & Engineering Chemistry Research, 2013, 52(10): 3543-3562. |
3 | GeZ Q, SongZ H. Multivariate Statistical Process Control [M]. London: Springer, 2013: 169-182. |
4 | 韩敏, 张占奎. 基于改进核主成分分析的故障检测与诊断方法[J]. 化工学报, 2015, 66(6): 2139-2149. |
HanM, ZhangZ K. Fault detection and diagnosis method based on modified kernel principal component analysis [J]. CIESC Journal, 2015, 66(6): 2139-2149. | |
5 | 李晗, 萧德云. 基于数据驱动的故障诊断方法综述[J]. 控制与决策, 2011, 26(1): 1-9. |
LiH, XiaoD Y. Survey on data driven fault diagnosis methods [J]. Control and Decision, 2011, 26(1): 1-9. | |
6 | LeeJ M, YooC K, SangW C, et al. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical Engineering Science, 2004, 59(1): 223-234. |
7 | GeZ Q, SongZ H. Process monitoring based on independent component analysis−principal component analysis (ICA− PCA) and similarity factors [J]. Industrial & Engineering Chemistry Research, 2007, 46(7): 2054-2063. |
8 | LiG, QinS J, ZhouD H. A new method of dynamic latent-variable modeling for process monitoring [J]. IEEE Transactions on Industrial Electronics, 2014, 61(11): 6438-6445. |
9 | 谭帅, 王福利, 常玉清, 等. 基于差分分段PCA的多模态过程故障监测[J]. 自动化学报, 2010, 36(11): 1626-1636. |
TanS, WangF L, ChangY Q, et al. Fault detection of multi-mode process using segmented PCA based on differential transform [J]. Acta Automatica Sinica, 2010, 36(11): 1626-1636. | |
10 | 王健, 冯健, 韩志艳. 基于流形学习的局部保持 PCA 算法在故障检测中的应用[J]. 控制与决策, 2013, 28(5): 683-687. |
WangJ, FengJ, HanZ Y. Locally preserving PCA method based on manifold learning and its application in fault detection[J]. Control and Decision, 2013, 28(5): 683-687. | |
11 | ZhaoC, GaoF. Fault-relevant principal component analysis (FPCA) method for multivariate statistical modeling and process monitoring[J]. Chemometrics & Intelligent Laboratory Systems, 2014, 133: 1-16. |
12 | MacgregorJ F, JaeckleC, KiparissidesC, et al. Process monitoring and diagnosis by multiblock PLS methods [J]. AIChE Journal, 1994, 40(5): 826-838. |
13 | WesterhuisJ A, KourtiT, MacGregorJ F. Analysis of multiblock and hierarchical PCA and PLS models [J]. Journal of Chemometrics, 1998, 12(5): 301-321. |
14 | GeZ Q, ZhangM, SongZ H. Nonlinear process monitoring based on linear subspace and Bayesian inference [J]. Journal of Process Control, 2010, 20(5): 676-688. |
15 | GeZ Q, SongZ H. Distributed PCA model for plant-wide process monitoring [J]. Industrial & Engineering Chemistry Research, 2013, 52(5): 1947-1957. |
16 | WangB, YanX F, JiangQ C, et al. Generalized Dice's coefficient-based multi-block principal component analysis with Bayesian inference for plant-wide process monitoring[J]. Journal of Chemometrics, 2015, 29(3): 165-178. |
17 | HuangJ, YanX F. Dynamic process fault detection and diagnosis based on dynamic principal component analysis, dynamic independent component analysis and Bayesian inference [J]. Chemometrics & Intelligent Laboratory Systems, 2015, 148: 115-127. |
18 | JiangQ C, YanX F, HuangB. Performance-driven distributed PCA process monitoring based on fault-relevant variable selection and Bayesian inference [J]. IEEE Transactions on Industrial Electronics, 2015, 63(1): 377-386. |
19 | GeZ Q, ChenJ. Plant-wide industrial process monitoring: a distributed modeling framework[J]. IEEE Transactions on Industrial Informatics, 2017, 12(1): 310-321. |
20 | 叶昊, 徐海鹏. 基于重构的传感器故障诊断贡献分析[J]. 清华大学学报(自然科学版), 2012, 52(1): 36-39. |
YeH, XuH P. Reconstruction-based contribution analysis for sensor fault diagnostics[J]. Journal of Tsinghua University Science and Technology, 2012, 52(1): 36-39. | |
21 | 彭开香, 马亮, 张凯. 复杂工业过程质量相关的故障检测与诊断技术综述[J]. 自动化学报, 2017, 43(3): 349-365. |
PengK X, MaL, ZhangK. Review of quality-related fault detection and diagnosis techniques for complex industrial processes[J]. Acta Automatica Sinica, 2017, 43(3): 349-365. | |
22 | LauC K, GhoshK, HussainM A, et al. Fault diagnosis of Tennessee Eastman process with multi-scale PCA and ANFIS[J]. Chemometrics & Intelligent Laboratory Systems, 2013, 120(2): 1-14. |
23 | ZhouD H, LiG, QinS J. Total projection to latent structures for process monitoring[J]. AIChE Journal, 2010, 56(1): 168-178. |
24 | 王海清, 余世明. 基于故障诊断性能优化的主元个数选取方法[J]. 化工学报, 2004, 55(2): 214-219. |
WangH Q, YuS M. Selection of the number of principal components based on the fault diagnosing performance analysis[J]. CIESC Journal, 2004, 55(2): 214-219. | |
25 | 苏林, 尚朝轩, 连光耀, 等. 基于故障检测率的主元个数确定方法[J]. 计算机测量与控制, 2011, 19(8): 1857-1860. |
SuL, ShangC X, LianG Y, et al. Selection of number of principal components based on fault detection accuracy[J]. Computer Measurement & Control, 2011, 19(8): 1857-1860. | |
26 | ShenY, DingS X, HaghaniA, et al. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process[J]. Journal of Process Control, 2012, 22(9): 1567-1581. |
27 | RussellE L, ChiangL H , BraatzR D . Tennessee Eastman Process[M]// Fault Detection and Diagnosis in Industrial Systems. London: Springer, 2001: 103-112. |
28 | 衷路生, 何东, 龚锦红, 等. 基于分布式ICA-PCA模型的工业过程故障监测[J]. 化工学报, 2015, 66(11): 4546-4554. |
ZhongL S, HED, GongJ H, et al. Fault monitoring of industrial process based on distributed ICA-PCA model[J]. CIESC Journal, 2015, 66(11): 4546-4554. | |
29 | 王海清, 蒋宁. 自适应Kernel学习网络在TE过程组分仪建模中的应用[J]. 化工学报, 2007, 58(2): 425-430. |
WangH Q, JiangN. Adaptive Kernel learning networks with application to modeling of analyzer in TE process[J]. Journal of Chemical Industry and Engineering(China), 2007, 58(2): 425-430. | |
30 | JiangQ C, YanX F. Nonlinear plant-wide process monitoring using MI-spectral clustering and Bayesian inference-based multiblock KPCA[J]. Journal of Process Control, 2015, 32: 38-50. |
[1] | Hui SHANG, Lu LIU, Hanmo WANG, Wenhui ZHANG. Effect of microwave field on hydrogen bonds in glycerol aqueous solution system [J]. CIESC Journal, 2019, 70(S1): 23-27. |
[2] | Nenglian FENG, Ruijin MA, Longke CHEN, Shikang DONG, Xiaofeng WANG, Xingyu ZHANG. Heat transfer characteristics of honeycomb liquid-cooled power battery module [J]. CIESC Journal, 2019, 70(5): 1713-1722. |
[3] | Qin WANG, Bingjian ZHANG, Chang HE, Qinglin CHEN. Solvent evaluation model base on energy consumption objective for aromatic extraction distillation units [J]. CIESC Journal, 2019, 70(5): 1815-1822. |
[4] | Fei LI, Cuili YANG, Wenjing LI, Junfei QIAO. Optimal control of wastewater treatment process using NSGAII algorithm based on multi-objective uniform distribution [J]. CIESC Journal, 2019, 70(5): 1868-1878. |
[5] | Wenxin DU, Lianying WU, Weitao ZHANG, Can CHEN, Yangdong HU. Research on vibration attrition of steel balls in liquid [J]. CIESC Journal, 2019, 70(4): 1505-1511. |
[6] | Shipin YANG, Zhen HUANG, Lijuan LI, Jianquan SONG, Jing YE, Hui WANG. A deep dive diagnostic and correction algorithm for mismatched sub-models in complicated chemical processes [J]. CIESC Journal, 2019, 70(4): 1485-1493. |
[7] | Wei FENG, Hongfeng GAO, Gui WANG, Langlang WU, Jingqin XU, Zhuangmei LI, Ping LI, Hongcun BAI, Qingjie GUO. Molecular model and pyrolysis simulation of Zaoquan coal [J]. CIESC Journal, 2019, 70(4): 1522-1531. |
[8] | Qianqing LIANG, Xuehu MA, Kai WANG, Jiang CHUN, Tingting HAO, Zhong LAN, Yaxiong WANG. Gas-liquid Taylor flow pressure drop in rectangular meandering microchannel [J]. CIESC Journal, 2019, 70(4): 1272-1281. |
[9] | Wensheng LIANG, Jiangtao LIU, Yue ZHAO, Wei HUANG, Zhijun ZUO. Theoretical calculation of effect of NiO and Ni catalysts for benzoic acid pyrolysis [J]. CIESC Journal, 2019, 70(4): 1429-1435. |
[10] | Weiwei SHEN, Daoming DENG, Qiaoping LIU, Jing GONG. Prediction model of critical gas velocities in gas wells based on annular mist flow theory [J]. CIESC Journal, 2019, 70(4): 1318-1330. |
[11] | Junmiao TANG, Haizhen YU, Xuhua SHI, Chudong TONG. Dynamic monitoring of chemical processes based on latent variable auto-regressive algorithm [J]. CIESC Journal, 2019, 70(3): 987-994. |
[12] | Qichao XU, Jinbo JIANG, Xudong PENG, Jiyun LI, Yuming WANG. Unified model and geometrical optimization of bi-directional groove of dry gas seal based on genetic algorithm [J]. CIESC Journal, 2019, 70(3): 995-1005. |
[13] | Tao TIAN, Bing LIU, Meisheng SHI, Yaxiong AN, Jun MA, Yanjun ZHANG, Xinxi XU, Donghui ZHANG. Experiment and simulation of PSA process for small oxygen generator with two adsorption beds [J]. CIESC Journal, 2019, 70(3): 969-978. |
[14] | Baochang XU, Hua ZHANG, Jinshan WANG. Partial approximate least absolute deviation for nonlinear system identification based on radial basis function [J]. CIESC Journal, 2019, 70(2): 653-660. |
[15] | Zhizhen WANG, Zhiyun ZOU. Nonlinear predictive control strategies of pH neutralization process based on neural networks [J]. CIESC Journal, 2019, 70(2): 678-686. |
|