CIESC Journal ›› 2019, Vol. 70 ›› Issue (1): 251-260.doi: 10.11949/j.issn.0438-1157.20180716
• Energy and environmental engineering • Previous Articles Next Articles
Cailin WANG1,2(),Shuaiwei GU1,2,Yuxing LI1,2(
),Qihui HU1,2,Lin TENG1,2,Jinghan WANG1,2,Hongtao MA1,2,Datong ZHANG1,2
CLC Number:
1 | HaszeldineR S. Carbon capture and storage: how green can black be?[J]. Science, 2009, 325(5948): 1647-1652. |
2 | MeztB. Climate change 2007: mitigation of climate change: contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change[J]. Computational Geometry, 2007, 18(2): 95-123. |
3 | 喻健良, 郭晓璐, 闫兴清, 等. 工业规模CO2管道泄放过程中的压力响应及相态变化[J]. 化工学报, 2015, 66(11): 4327-4334. |
YuJ L, GuoX L, YanX Q, et al. Pressure response and phase transition in process of CO2 pipeline release in industrial scale[J]. CIESC Journal, 2015, 66(11): 4327-4334. | |
4 | TengL, LiY X, ZhaoQ, et al. Decompression characteristics of CO2 pipelines following rupture[J]. Journal of Natural Gas Science & Engineering, 2016, 36: 213-223. |
5 | GuS W, GaoB B, TengL, et al. Monte carlo simulation of supercritical carbon dioxide adsorption in carbon slit pores[J]. Energy & Fuels, 2017, 31(9): 9717-9724. |
6 | AgarwaliA, ParsonsJ. Commercial structures for integrated CCS-EOR projects[J]. Energy Procedia, 2011, 4(22): 5786-5793. |
7 | TengL, ZhangD T, LiY X, et al. Multiphase mixture model to predict temperature drop in highly choked conditions in CO2 enhanced oil recovery[J]. Applied Thermal Engineering, 2016, 108: 670-679. |
8 | GodecM, KuuskraaV, LeeuwenT V, et al. CO2 storage in depleted oil fields: the worldwide potential for carbon dioxide enhanced oil recovery[J]. Energy Procedia, 2011, 4(22): 2162-2169. |
9 | GozalpourF, RenS R, TohidiB. CO2 EOR and storage in oil reservoir[J]. Oil & Gas Science & Technology, 2006, 60(3): 537-546. |
10 | KovscekA R, CakiciM D. Geologic storage of carbon dioxide and enhanced oil recovery. II. Cooptimization of storage and recovery[J]. Energy Conversion & Management, 2005, 46(11): 1941-1956. |
11 | QinJ, HanH, LiuX. Application and enlightenment of carbon dioxide flooding in the United States of America[J]. Petroleum Exploration & Development, 2015, 42(2): 232-240. |
12 | JohnssonF, ReinerD, ItaokaK, et al. Stakeholder attitudes on carbon capture and storage — an international comparison[J]. International Journal of Greenhouse Gas Control, 2010, 4(2): 410-418. |
13 | 张德平. CO2驱采油技术研究与应用现状[J]. 科技导报, 2011, 29(13): 75-79. |
ZhangD P. CO2 flooding enhanced oil recovery technique and its application status[J]. Science & Technology Review, 2011, 29(13): 75-79. | |
14 | RenB, RenS, ZhangL, et al. Monitoring on CO2 migration in a tight oil reservoir during CCS-EOR in Jilin Oilfield China[J]. Energy, 2016, 98: 108-121. |
15 | SongZ, LiZ, WeiM, et al. Sensitivity analysis of water-alternating-CO2 flooding for enhanced oil recovery in high water cut oil reservoirs[J]. Computers & Fluids, 2014, 99: 93-103. |
16 | MaJ, WangX, GaoR, et al. Jingbian CCS project, China: second year of injection, measurement, monitoring and verification[J]. Energy Procedia, 2014, 63: 2921-2938. |
17 | ZhaoD F, LiaoX W, YinD D. Evaluation of CO2 enhanced oil recovery and sequestration potential in low permeability reservoirs, Yanchang Oilfield, China[J]. Journal of the Energy Institute, 2014, 87(4): 306-313. |
18 | HuangF, HuangH, WangY, et al. Assessment of miscibility effect for CO2 flooding EOR in a low permeability reservoir[J]. Journal of Petroleum Science & Engineering, 2016, 145: 328-335. |
19 | 周恒, 邢晓凯, 国旭慧, 等. 原油发泡问题研究进展[J]. 石油化工高等学校学报, 2018, 31(1): 8-12. |
ZhouH, XingX K, GuoX H, et al. Research progress in foaming of crude oil[J]. Journal of Petrochemical Universities, 2018, 31(1): 8-12. | |
20 | 曲正新. 原油泡沫的危害和消除方法[J]. 当代化工, 2015, 44(5): 1132-1134. |
QuZ X. Harm and elimination methods of crude oil foam[J]. Contemporary Chemical Industry, 2015, 44(5): 1132-1134. | |
21 | 程文学, 邢晓凯, 左丽丽, 等. 液体泡沫性能测试方法综述[J]. 油田化学, 2014, 31(1): 152-158. |
ChengW X, XingX K, ZuoL L, et al. Reviews on testing methods of liquid foam performance[J]. Oilfield Chemistry, 2014, 31(1): 152-158. | |
22 | PoindexterM K, ZakiN N, KilpatrickP K, et al. Factors contributing to petroleum foaming. 1. Crude oil systems[J]. Energy & Fuels, 2002, 16(3): 700-710. |
23 | ZakiN N, PoindexterM K, KilpatrickP K. Factors contributing to petroleum foaming. 2. Synthetic crude oil systems[J]. Energy & Fuels, 2002, 16(3): 711-717. |
24 | CallaghanI C. Non-aqueous foams: a study of crude oil foam stability[M]//Foams: Physics, Chemistry and Structure. London: Springer, 1989: 89-104. |
25 | 刘德生, 陈小榆, 周承富. 温度对泡沫稳定性的影响[J]. 钻井液与完井液, 2006, 23(4):10-12. |
LiuD S, ChenX Y, ZhouC F. Effects of temperature on the stability of foam[J]. Drilling Fluid & Completion Fluid, 2006, 23(4):10-12. | |
26 | 李东东, 侯吉瑞, 赵凤兰, 等. 二氧化碳在原油中的分子扩散系数和溶解度研究[J]. 油田化学, 2009, 26(4): 405-408. |
LiD D, HouJ R, ZhaoF L, et al. Study of molecular diffusion coefficients and solubility of carbon dioxide in a Jinlin crude oil[J]. Oilfield Chemistry, 2009, 26(4): 405-408. | |
27 | 吕明明, 王树众. 二氧化碳泡沫稳定性及聚合物对其泡沫性能的影响[J]. 化工学报, 2014, 65(6): 2219-2224. |
LyuM M, WangS Z. Stability of carbon dioxide foam and effect of polymer on its foam properties[J]. CIESC Journal, 2014, 65(6): 2219-2224. | |
28 | 李曼曼. 超临界CO2用于稠油长距离输送的探索性研究[D]. 青岛: 中国石油大学(华东), 2011. |
LiM M. Exploratory research on techniques of using supercritical CO2 to deliver heavy oil[D]. Qingdao: China University of Petroleum, 2011. | |
29 | PengD Y, RobinsonD B. A new two-constant equation of state[J]. Industrial & Engineering Chemistry Fundamentals, 1976, 15(1): 59-64. |
30 | 唐金库. 泡沫稳定性影响因素及性能评价技术综述[J].舰船防化, 2008, 4: 1-8. |
TangJ K. Review on influence factors and measurement techniques of foam stability[J]. Chemical Defence on Ships, 2008, 4: 1-8. | |
31 | 燕永利. 非水相体系泡沫的形成及其稳定性机理研究进展[J]. 应用化工, 2016, 45(11): 2135-2138. |
YanY L. Advances in the foaming and stabilization mechanisms of non-aqueous systems[J]. Applied Chemical Industry, 2016, 45(11): 2135-2138. | |
32 | 赵国庆. 泡沫表观性能研究及在稠油开采中的应用[D]. 济南: 山东大学, 2007. |
ZhaoG Q. Foam apparent properties study and its application in heavy oil recovery[D]. Jinan: Shandong University, 2007. | |
33 | PrincenH M, MasonS G. The permeability of soap films to gases[J]. Journal of Colloid Science, 1965, 20(4): 353-375. |
34 | 熊钰, 王冲, 王玲, 等. 泡沫油形成过程及其影响因素研究进展[J]. 世界科技研究与发展, 2016, 38(3): 471-480. |
XiongY, WangC, WangL, et al. Research development of foamy oil formation and its affecting factors[J]. World Sci-Tech R&D., 2016, 38(3): 471-480. | |
35 | 赵仁保, 敖文君, 肖爱国, 等. CO2在原油中的扩散规律及变扩散系数计算方法[J]. 中国石油大学学报(自然科学版), 2016, 40(3): 136-142. |
ZhaoR B, AoW J, XiaoA G, et al. Diffusion law and measurement of variable diffusion coefficient of CO2 in oil[J]. Journal of China University of Petroleum, 2016, 40(3): 136-142. |
[1] | Zhaowen ZENG, Cheng ZHENG, Taoyan MAO, Yuan WEI, Runhui XIAO, Siyu PENG. Progress in research and application of microwave in chemical process [J]. CIESC Journal, 2019, 70(S1): 1-14. |
[2] | Hua CHEN, Xiuli LIU, Yaxing YANG, Liqiong ZHONG, Lei WANG, Na GAO. Numerical simulation of foam metal copper/paraffin phase change thermal storage process [J]. CIESC Journal, 2019, 70(S1): 86-92. |
[3] | Junqiang WU, Wenming JIANG, Shilin DU, Yang LIU. Experiment on drag reduction of heavy oil in horizontal pipeline by water annular conveying [J]. CIESC Journal, 2019, 70(5): 1734-1741. |
[4] | Jihai DUAN, Shuaibiao HUANG, Chang GAO, Aqiang CHEN, Qingshan HUANG. Influence of slit structure in hydrocyclone conical section on solid-liquid separation performance [J]. CIESC Journal, 2019, 70(5): 1823-1831. |
[5] | Junlan YANG, Shuying NING. Study on boiling heat transfer characteristics of CO2/ lubricating oil mixture in mini-channel tube [J]. CIESC Journal, 2019, 70(5): 1772-1778. |
[6] | Bingguo ZHU, Xinming WU, Liang ZHANG, Enhui SUN, Haisong ZHANG, Jinliang XU. Flow and heat transfer characteristics of supercritical CO2 in vertical tube [J]. CIESC Journal, 2019, 70(4): 1282-1290. |
[7] | Tao TIAN, Bing LIU, Meisheng SHI, Yaxiong AN, Jun MA, Yanjun ZHANG, Xinxi XU, Donghui ZHANG. Experiment and simulation of PSA process for small oxygen generator with two adsorption beds [J]. CIESC Journal, 2019, 70(3): 969-978. |
[8] | Shaojuan ZENG, Dawei SHANG, Min YU, Hao CHEN, Haifeng DONG, Xiangping ZHANG. Applications and perspectives of NH3 separation and recovery with ionic liquids [J]. CIESC Journal, 2019, 70(3): 791-800. |
[9] | Qiang ZHOU, Junzheng HAO, Linhua ZHU, Hong WANG, Tian SI, Yanping HE, Yanlin SUN. Foam phase preparation of porous poly(methyl methacrylate-co-butyl acrylate) microspheres in continuous process [J]. CIESC Journal, 2019, 70(3): 1208-1219. |
[10] | Lei WANG, Guiying FANG, Qingyuan YANG. Performance of metal-organic frameworks for CO2 capture from large-scale computational screening [J]. CIESC Journal, 2019, 70(3): 1135-1143. |
[11] | Shun ZHU, Qi GUO, Dawei ZHANG, Qingchun YANG. Conceptual design and system analysis coal to ethylene glycol process integrated with efficient utilization of CO2 [J]. CIESC Journal, 2019, 70(2): 772-779. |
[12] | Song HU, Jinlong LI, Mujin LI, Weisheng YANG. Extractive refining process for production of propylene oxide with high purification [J]. CIESC Journal, 2019, 70(2): 670-677. |
[13] | Rui MU, Gaoyang LE, Huizhong YANG. Estimation method of dissolved gas quantity in COD determination based on O3/UV [J]. CIESC Journal, 2019, 70(2): 730-735. |
[14] | Zhiqiang GENG, Shaoxing JING, Ju BAI, Zhongkai WANG, Qunxiong ZHU, Yongming HAN. Improved intelligent warning method based on MWSPCA-CBR and its application in petrochemical industries [J]. CIESC Journal, 2019, 70(2): 572-580. |
[15] | Zhongyan LIU, Dahan SUN, Xu JIN, Tianhao WANG, Yitai MA. Evaluation research on boiling heat transfer model of CO2 in tube [J]. CIESC Journal, 2019, 70(1): 56-64. |
|