CIESC Journal ›› 2019, Vol. 70 ›› Issue (3): 857-864.doi: 10.11949/j.issn.0438-1157.20180712

• Fluid dynamics and transport phenomena • Previous Articles     Next Articles

Optimization of heat removal modes for heat exchanger in molten salt single storage tank

Suli SHI(),Yuanwei LU(),Qiang YU,Yuting WU   

  1. College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
  • Received:2018-07-02 Revised:2018-09-21 Online:2019-03-05 Published:2018-10-25
  • Contact: Yuanwei LU E-mail:1689517645@qq.com;luyuanwei@bjut.edu.cn

Abstract:

Low cost heat charge and discharge can be realized by immersion arrangement of a helically coiled heat exchanger in molten salt single storage tank. Heat removal modes of the helically coiled heat exchanger will directly affect the heat discharge process of the storage system. Simulations were performed for two heat removal modes which include upper-lower path and lower-upper path. For different heat removal modes in the heat discharge process, the law of heat discharge performance of the molten salt single storage tank is given, and the change of flow field of molten salt side is analyzed. The results show that upper-lower path for the helically coiled heat exchanger can improve the transient out temperature, transient heat transfer rate and heat discharge efficiency. The research results provide a theoretical basis for the design of the molten salt single tank heat storage and discharge system.

Key words: immersed heat exchanger, heat removal mode, heat discharge process, molten salt single tank, convection, heat transfer, flow

CLC Number: 

  • TK 124

Fig.1

Schematic diagram of model principle"

Fig.2

Subdomains for molten salt domain"

Fig.3

Detailed views of grids"

Fig.4

Data comparison between numerical simulation and experiment"

Fig.5

Comparison of transient outlet temperature under different heat removal mode"

Fig.6

Comparison of transient heat transfer rate under different heat removal mode"

Fig.7

Comparison of heat discharge efficiency under different heat removal mode"

Fig.8

Molten salt temperature inside storage tank (V inlet = 25 m/s)"

Fig.9

Temperature contours of single storage tank/K"

Fig.10

Velocity of molten salt around heat exchanger"

1 崔锡民, 鹿院卫, 吴玉庭, 等 . 温度分层对小型熔盐单罐释热过程影响[J]. 化工学报, 2017, 69(6): 2410-2416.
Cui X M , Lu Y W , Wu Y T , et al . Influence of thermal stratification on discharging process of molten salt in small single thermal storage tank[J]. CIESC Journal, 2017, 69(6): 2410-2416.
2 孙晓丽, 鹿院卫, 崔锡民, 等 . 单罐熔融盐释热传热规律实验研究[J]. 太阳能学报, 2018, 39(1): 8-13.
Sun X L , Lu Y W , Cui X M , et al . Heat discharge research of molten salt in single energy storage tank[J]. Acta Energiae Solaris Sinica, 2018, 39(1):8-13.
3 吴玉庭, 张晓明, 马重芳, 等 . 一种带有中间蒸发器的熔盐蓄热式电加热集中供暖系统: 106369655A[P]. 2017-02-01.
Wu Y T , Zhang X M , Ma C F , et al . A central heating system with intermediate evaporator using molten salt for thermal storage by electric heating: 106369655A[P]. 2017-02-01.
4 马重芳, 吴玉庭, 任楠, 等 . 熔盐蓄热式电加热集中供暖系统: 103836703A[P]. 2014-06-04.
Ma C F , Wu Y T , Ren N , et al . Central heating system using molten salt for thermal storage by electric heating: 103836703A[P]. 2014-06-04.
5 鹿院卫, 吴玉庭, 杜文彬, 等 . 一种单罐电能蓄能装置: 203771692U[P]. 2014-08-13.
Lu Y W , Wu Y T , Du W B , et al . A device of single electric energy storage tank: 203771692U[P]. 2014-08-13.
6 鹿院卫, 吴玉庭, 杜文彬, 等 . 一种单罐电能蓄能装置及其使用方法: 103836795A[P].2014-06-04.
Lu Y W , Wu Y T , Du W B , et al . A device of single electric energy storage tank and its using method: 103836795A[P]. 2014-06-04.
7 鹿院卫, 吴玉庭, 孙晓丽, 等 . 一种单罐蓄能装置及其使用方法: 103940119A[P]. 2014-07-23.
Lu Y W , Wu Y T , Sun X L , et al . A device of single thermal energy storage tank and its using method: 103940119A[P]. 2014-07-23.
8 Brosseau D , Kelton J W , Ray D , et al .Testing of thermocline filler materials and molten-salt heat transfer fluids for thermal energy storage systems in parabolic trough power plants[J]. Journal of Solar Energy Engineering, 2005, 127(2): 109-116.
9 Bradshaw R W , Dawson D B , Wolredo D L R , et al . Final test and evaluation results from the solar two project[J]. Energy Storage, 2002, 65(5): 162-168.
10 Gabbrielli R , Zamparelli C . Optimal design of a molten salt thermal storage tank for parabolic trough solar power plants[J]. Journal of Solar Energy Engineering, 2009, 131(4): 041001-041011.
11 Herrmann U , Kelly B , Price H . Two-tank molten salt storage for parabolic trough solar power plants[J]. Energy, 2004, 29(5): 883-893.
12 Flueckiger S , Zhen Y , Garimella S . Review of molten-salt thermocline tank modeling for solar thermal energy storage[J]. Heat Transfer Engineering, 2013, 34(10): 787-800.
13 孙晓丽, 鹿院卫, 崔锡民, 等 . 熔融盐单罐储热系统释热传热规律研究[J]. 工程热物理学报, 2016, V37(5): 1032-1037.
Sun X L , Lu Y W , Cui X M , et al . Heat discharge research of molten salt in single energy storage tank[J]. Journal of Engineering Thermophysics, 2016, V37(5): 1032-1037.
14 Haltiwanger J , Davidson J H . Discharge of a thermal storage tank using an immersed heat exchanger with an annular baffle[J]. Solar Energy, 2009, 83(5): 193-201.
15 Liu W , Davidson J H , Mantell S C . et al . Natural convection from a horizontal tube heat exchanger immersed in a tilted enclosure[J]. ASME Journal of Solar Energy, 2003, 125(1): 67-75.
16 Liu W , Davidson J H , Kulacki F A . Natural convection from a tube bundle in a thin inclined enclosure[J]. ASME Journal of Solar Energy, 2004, 126(2): 702–709.
17 Liu W , Davidson J H , Kulacki F A . Thermal characterization of prototypical integral collector storage systems with immersed heat exchangers[J]. ASME Journal of Solar Energy, 2005, 127(1): 21-28.
18 Yan S , Davidson J H . Transient natural convection heat transfer correlations for tube bundles immersed in a thermal storage[J]. ASME Journal of Solar Energy, 2007, 129(2): 210–214.
19 Yan S , Davidson J H . Multi-zone porous medium model of the thermal and fluid processes during discharge of an inclined rectangular storage vessel via an immersed tube bundle[J]. ASME Journal of Solar Energy, 2007, 129(4): 449–457.
20 孙晓丽 . 单罐熔融盐蓄热与释热传热规律研究[D]. 北京: 北京工业大学, 2016.
Sun X L . Study on charging and discharging process of molten salt in single thermal energy storage tank[D]. Beijing: Beijing University of Technology, 2016.
21 Yan S , Davidson J H . Multi-zone porous medium model of the thermal and fluid processes during discharge of an inclined rectangular storage vessel via an immersed tube bundle[J]. ASME Journal of Solar Energy, 2007, 129(4): 449–457.
22 Li S , Zhang Y , Zhang K , et al . Study on performance of storage tanks in solar water heater system in charge and discharge progress[J]. Energy Procedia, 2014, 48(48): 384-393.
23 Prabhanjan D G , Rennie T J , Raghavan G S V . Natural convection heat transfer from helical coiled tubes[J]. International Journal of Thermal Sciences, 2004, 43(4): 359-365.
24 Wu Y T , Li Y , Lu Y W , et al . Novel low melting point binary nitrates for thermal energy storage applications[J]. Solar Energy Materials & Solar Cells, 2017, 164(10): 114–121.
25 李英 . 低熔点二元混合熔盐传热蓄热介质的制备及热物性研究[D].北京: 北京工业大学, 2017.
Li Y . Study of preparation and thermophysical properties of the low melting point binary mixed molten salts for heat transfer and storage[D]. Beijing: Beijing University of Technology, 2017.
26 李英, 吴玉庭, 鹿院卫, 等 . 二元混合硝酸盐相图的预测及热物性实验研究[J]. 太阳能学报, 2018, 39(2): 435-440.
Li Y , Wu Y T , Lu Y W , et al . Study of thermophysical properties and phase diagram prediction of binary mixed molten salts[J].Acta Energiae Solaris Sinica, 2018, 39(2): 435-440.
27 李鹏飞, 徐敏义, 王飞飞 . 精通CFD工程仿真与案例实战[M]. 北京:人民邮电出版社, 2011.
Li P F , Xu M Y , Wang F F . Proficient in CFD Engineering Simulation and Case Study[M]. Beijing:People Post and Telecommunications Publishing House, 2011.
28 甘雪菲, 何正斌, 伊松林, 等 . 石蜡相变储热系统的放热效率[J]. 农业工程学报, 2012, 28(2): 222-225.
Gan X F , He Z B , Yi W S , et al . Discharging efficiency of paraffin phase change heat storage system[J]. Transactions of the CSAE, 2012, 28(2): 222-225.
29 中华人民共和国住房和城乡建设部 . 城市供热规划规范: GBT51074—2015[S]. 北京: 中国建筑工业出版社, 2015.
Ministry of Housing and Urban-Rural Development of the People's Republic of China . Code for urban heating supply planning: GBT51074—2015[S]. Beijing: China Architecture & Building Press, 2015.
30 Nicodemus J H , Jeffrey J , Haase J , et al . Effect of baffle and shroud designs on discharge of a thermal storage tank using an immersed heat exchanger[J]. Solar Energy, 2017, 157(15): 911-919.
[1] Zhe LI, Wenlong WANG, Meng ZHANG, Jing SUN, Yanpeng MAO, Xiqiang ZHAO, Zhanlong SONG. Low frequency electromagnetic parameters and absorbing heat generation properties of carbon nanotubes [J]. CIESC Journal, 2019, 70(S1): 28-34.
[2] Hua CHEN, Xiuli LIU, Yaxing YANG, Liqiong ZHONG, Lei WANG, Na GAO. Numerical simulation of foam metal copper/paraffin phase change thermal storage process [J]. CIESC Journal, 2019, 70(S1): 86-92.
[3] Li ZHANG, Gang YOU, Xiaofeng QIAO, Guangwen XU, Guozhen LIU, Yunyi LIU. Chaotic analysis of pressure fluctuation and identification of flow regime in chlor-alkali electrolyzer [J]. CIESC Journal, 2019, 70(S1): 35-44.
[4] Leigang ZHANG, Bo XU, Juan SHI, Zhenqian CHEN. Experimental study on condensation of FC-72 in narrow rectangular channel with ellipse-shape pin fins in microgravity [J]. CIESC Journal, 2019, 70(S1): 45-53.
[5] Siyu SHAN, Hongbo TAN. Study on heat and mass transfer characteristics outside flat tube for evaporative condensers [J]. CIESC Journal, 2019, 70(S1): 69-78.
[6] Junjie LIN, Kun LUO, Shuai WANG, Chenshu HU, Jianren FAN. Verification of coarse-grained CFD-DEM method in multiple flow regimes [J]. CIESC Journal, 2019, 70(5): 1702-1712.
[7] Nenglian FENG, Ruijin MA, Longke CHEN, Shikang DONG, Xiaofeng WANG, Xingyu ZHANG. Heat transfer characteristics of honeycomb liquid-cooled power battery module [J]. CIESC Journal, 2019, 70(5): 1713-1722.
[8] Yuting CHEN, Yanyan XU, Lei WANG, Shuang YE, Weiguang HUANG. Effect of evaporator heat transfer process on selection of mixture and operating condition in ORC system [J]. CIESC Journal, 2019, 70(5): 1723-1733.
[9] Junqiang WU, Wenming JIANG, Shilin DU, Yang LIU. Experiment on drag reduction of heavy oil in horizontal pipeline by water annular conveying [J]. CIESC Journal, 2019, 70(5): 1734-1741.
[10] Bing LI, Yi YANG, Zuohua LIU, Changyuan TAO, Deyin GU, Chuanlin XU, Yundong WANG. Solid-liquid chaotic mixing and leaching enhancement performance in phosphoric acid leaching process [J]. CIESC Journal, 2019, 70(5): 1742-1749.
[11] Shuang ZHANG, Lei ZHAO, Lin GAO, Hua LIU. Exploration on thermo-mechanical characteristics of energy piles with double-U pipes buried in parallel by means of numerical simulations [J]. CIESC Journal, 2019, 70(5): 1750-1760.
[12] Jianguo YAN, Fengling ZHU, Pengcheng GUO, Xingqi LUO. Convective heat transfer of supercritical CO2 flowing a mini circular tube under high heat flux and low mass flux conditions [J]. CIESC Journal, 2019, 70(5): 1779-1787.
[13] Wu SU, Xiaogang SHI, Yingya WU, Jinsen GAO, Xingying LAN. CFD simulation on hydrogenation of acetylene to ethylene in slurry bed [J]. CIESC Journal, 2019, 70(5): 1858-1867.
[14] Jihai DUAN, Shuaibiao HUANG, Chang GAO, Aqiang CHEN, Qingshan HUANG. Influence of slit structure in hydrocyclone conical section on solid-liquid separation performance [J]. CIESC Journal, 2019, 70(5): 1823-1831.
[15] Junlan YANG, Shuying NING. Study on boiling heat transfer characteristics of CO2/ lubricating oil mixture in mini-channel tube [J]. CIESC Journal, 2019, 70(5): 1772-1778.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LING Lixia, ZHANG Riguang, WANG Baojun, XIE Kechang. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] LEI Zhigang, LONG Aibin, JIA Meiru, LIU Xueyi. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] SU Haifeng, LIU Huaikun, WANG Fan, LÜXiaoyan, WEN Yanxuan. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] WANG Jianlin, XUE Yaoyu, YU Tao, ZHAO Liqiang. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] SUN Fubao, MAO Zhonggui, ZHANG Jianhua, ZHANG Hongjian, TANG Lei, ZHANG Chengming, ZHANG Jing, ZHAI Fangfang. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] Gao Ruichang, Song Baodong and Yuan Xiaojing( Chemical Engineering Research Center, Tianjin University, Tianjin 300072). LIQUID FLOW DISTRIBUTION IN GAS - LIQUID COUNTER - CONTACTING PACKED COLUMN[J]. , 1999, 50(1): 94 -100 .
[7] Su Yaxin, Luo Zhongyang and Cen Kefa( Institute of Thermal Power Engineering , Zhejiang University , Hangzhou 310027). A STUDY ON THE FINS OF HEAT EXCHANGERS FROM OPTIMIZATION OF ENTROPY GENERATION[J]. , 1999, 50(1): 118 -124 .
[8] Luo Xiaoping(Department of Industrial Equipment and Control Engineering , South China University of Technology, Guangzhou 510641)Deng Xianhe and Deng Songjiu( Research Institute of Chemical Engineering, South China University of Technology, Guangzhou 5106. RESEARCH ON FLOW RESISTANCE OF RING SUPPORT HEAT EXCHANGER WITH LONGITUDINAL FLUID FLOW ON SHELL SIDE[J]. , 1999, 50(1): 130 -135 .
[9] Jin Wenzheng , Gao Guangtu , Qu Yixin and Wang Wenchuan ( College of Chemical Engineering, Beijing Univercity of Chemical Technology, Beijing 100029). MONTE CARLO SIMULATION OF HENRY CONSTANT OF METHANE OR BENZENE IN INFINITE DILUTE AQUEOUS SOLUTIONS[J]. , 1999, 50(2): 174 -184 .
[10]

LI Qingzhao;ZHAO Changsui;CHEN Xiaoping;WU Weifang;LI Yingjie

.

Combustion of pulverized coal in O2/CO2 mixtures and its pore structure development

[J]. , 2008, 59(11): 2891 -2897 .