CIESC Journal ›› 2019, Vol. 70 ›› Issue (1): 379-387.doi: 10.11949/j.issn.0438-1157.20180678

• Process safety • Previous Articles     Next Articles

Calculate time to maximum rate under adiabatic condition by numerical calculation method

Yi ZHU(),Hao WANG,Liping CHEN(),Zichao GUO,Zhongqi HE,Wanghua CHEN   

  1. Department of Safety Engineering, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
  • Received:2018-06-21 Revised:2018-10-05 Online:2019-01-05 Published:2018-10-29
  • Contact: Liping CHEN E-mail:1579794844@qq.com;clp2005@hotmail.com

Abstract:

The maximum reaction rate arrival time (TMRad) is a very important parameter in chemical process thermal risk assessment. The general method for calculation of TMRad is based on N-order model kinetic analysis. However, the chemical reaction process is so complicated that only do kinetic analysis based on N-order without consider the type of reaction may cause large deviation or even incorrect assessments. Therefore, this paper proposes to calculate TMRad and TD24 by numerical calculation methods based on reaction model. 20% DTBP toluene solution and CHP represent N-order reaction and autocatalytic reaction, respectively. The analysis of ARC test data of two substances shows this method can be used to calculate TMRad and TD24 of N-order reaction reliably, but the comparison of autocatalytic reaction with two methods shows that although the fitting effect is very good, the general method calculated result has a large deviation, because the kinetic parameters are different under two models, this paper also perform the deviation size analysis. Therefore, it can be seen that the numerical calculation method has wide-range applicability, and to an exothermal curve, it is necessary to use the method to evaluate the TMRad and TD24 based on the understanding of the reaction type, so that the evaluation result is more reliable and accurate.

Key words: thermodynamics, thermal decomposition reaction, stability, safety, time to maximum rate under adiabatic condition, N-order, autocatalysis

CLC Number: 

  • O 642.1

Fig.1

Calculation flowchart based on fourth-order Runge-Kutta method"

Table 1

ARC test information for 20% DTBP toluene solution of this work and other related works"

Workms /gCp,s/(J·g-1·K-1)mb /gCp,b/(J·g-1·K-1)φTon /℃Tf /℃
this work4.95215.320.421.65115.3181.71
Kossoy et al[11]NANANANA1.665125.8NA

Fig.2

Experimental data of 20% DTBP toluene solution exothermal curve and fitting result"

Table 2

Kinetic parameters of this work and other related works (N-order)"

WorkA/s-1E/(kJ·mol-1nΔTAD /K
this work9.12×1016165.371.0566.41
Kossoy et al[11]3.67×1015155.380.98NA

Fig.3

Temperature rise rate curve of 20% DTBP toluene solution under different T0"

Fig.4

TMRad results calculated by numerical methods and general methods (20% DTBP toluene solution)"

Table 3

ARC test information for CHP of this work"

ms /gCp,s/(J·g-1·K-1)mb/gCp,b/(J·g-1·K-1)φTon /℃Tf /℃
0.22214.670.4214.75120.64166.80

Fig.5

Experimental data of CHP exothermal curve and fitting result"

Table 4

Kinetic parameters of this work (N-order and BP model)"

calculate modelA /s-1E /(kJ·mol-1)nΔTAD /K
BP model2.66×1012(A1) 6.84×1011(A2)128.60(E1) 116.38(E2)0.40(n1) 1.42(n2) 1.06(n3)46.11
N-order model6.29×1023213.941.3346.11

Fig.6

Temperature rise rate curves of CHP under different T0"

Fig.7

TMRad results calculated by numerical methods and general methods (CHP)"

Fig.8

Fitting curves of experimental data and extrapolated simulation curves"

Fig.9

Deviations of TMRad calculated by N-order model with real value (BP model)"

1 EtchellsJ C. Why reactions run away[J]. Organic Process Research & Development, 1997, 1(6): 435-437.
2 BarbasR, BotijaM, CampsH, et al. Safety evaluation of an unexpected incident with a nitro compound[J]. Organic Process Research & Development, 2007, 11(6): 1131-1134.
3 ShimizeS, OsatoH, ImamuraY, et al. Safety evaluation of sodium borohydride in dimethylacetamide[J]. Organic Process Research & Development, 2010, 14(6): 1518-1520.
4 StoesselF. Thermal Safety of Chemical Process: Risk Assessment and Process Design[M]. Weinheim: Wiley-VCH, 2008: 55-56.
5 彭敏君, 路贵斌, 陈网桦, 等. 苯胺溶剂中偶氮二异丁腈热分解特性及动力学[J]. 物理化学学报, 2013, 29(10): 2095-2100.
PengM J, LuG B, ChenW H, et al. Thermal decomposition characteristic and kinetics of AIBN in aniline solvent[J]. Acta Physico-Chimica Sinica, 2013, 29(10): 2095-2100.
6 周奕杉, 陈利平, 陈网桦, 等. 甲苯一段硝化产物TD24的获取[J]. 化工学报, 2014, 65(11): 4383-4391.
ZhouY S, ChenL P, ChenW H, et al. TD24 determination for mono-nitration products of toluene[J]. CIESC Journal, 2014, 65(11): 4383-4391.
7 SemenoffN. Zur theorie des verbrennung sprozesses[J]. Zeitschrift für Physik, 1928, 48(7): 571-582.
8 TownsendD I, TouJ C. Thermal hazard evaluation by an accelerating rate calorimeter[J]. Thermochimica Acta, 1980, 37(1): 1-30.
9 TouJ C, WhitingL F. The thermokinetic performance of an accelerating rate calorimeter[J]. Thermochimica Acta, 1981, 48(1): 21-42.
10 Frank-KamenetskiiD A, SemenoffN, WilhelmR H. Diffusion and Heat Exchange in Chemical Kinetics[M]. Princeton: Princeton University Press, 1955: 145-200.
11 KossoyA, SinghJ, KoludarovaE Y. Mathematical methods for application of experimental adiabatic data – an update and extension[J]. Journal of Loss Prevention in the Process Industries, 2015, 33: 88-100.
12 GuoZ C, ChenL P, ChenW H. Estimation of kinetic parameters from adiabatic calorimetric data by a hybrid particle swarm optimization method[J]. Chemical Engineering Research & Design, 2017, 122: 273-279.
13 DormandJ R, PrinceP J. A family of embedded Runge-Kutta formulae[J]. J. Computational & Applied Mathematics, 1980, 6(1): 19-26.
14 郭菊喜. 四阶Runge-Kutta格式及五阶Runge-Kutta格式的证明[J]. 乐山师范学院学报, 2016, 31(4): 8-15.
Guo J X, The proof of fourth-order Runge-Kutta and fifth-order Runge-Kutta method[J]. Journal of Leshan Normal University, 2016, 31(4): 8-15.
15 RoduitB, HartmannM, FollyP, et al. Prediction of thermal stability of materials by modified kinetic and model selection approaches based on limited amount of experimental points[J]. Thermochimica Acta, 2014, 579(5): 31-39.
16 KimuraA, OtsukaT. Performance evaluation of differential accelerating rate calorimeter for the thermal runaway reaction of di-tert-butyl peroxide[J]. Journal of Thermal Analysis & Calorimetry, 2013, 113(3): 1585-1591.
17 AndY I, SurianarayananM. Comprehensive kinetic model for adiabatic decomposition of di-tert-butyl peroxide using batchCAD[J]. Industrial & Engineering Chemistry Research, 2003, 42(13): 2987-2995.
18 HoT C, DuhY S, ChenJ R. Case studies of incidents in runaway reactions and emergency relief[J]. Process Safety Progress, 1998, 17(4): 259-262.
19 WuK W, HouH Y, ShuC M. Thermal phenomena studies for dicumyl peroxide at various concentrations by DSC[J]. Journal of Thermal Analysis & Calorimetry, 2006, 83(1): 41-44.
20 DuhY S, KaoC S, LeeC, et al. Runaway hazard assessment of cumene hydroperoxide from the cumene oxidation process[J]. Process Safety & Environmental Protection, 1997, 75(2): 73-80.
21 WuS H, WangY W, WuT C, et al. Evaluation of thermal hazards for dicumyl peroxide by DSC and VSP2[J]. Journal of Thermal Analysis & Calorimetry, 2008, 93(1): 189-194.
22 ChenK Y, WuS H, WangY W, et al. Runaway reaction and thermal hazards simulation of cumene hydroperoxide by DSC[J]. Journal of Loss Prevention in the Process Industries, 2008, 21(1): 101-109.
23 ChenJ R, ChengS Y, YuanM H, et al. Hierarchical kinetic simulation for autocatalytic decomposition of cumene hydroperoxide at low temperatures[J]. Journal of Thermal Analysis & Calorimetry, 2009, 96(3): 751-758.
24 黄艳军, 谢传欣, 曹居正, 等. 过氧化氢异丙苯热稳定性与热安全性研究[J]. 中国安全科学学报, 2011, 21(6): 116-122.
HuangY J, XieC X, CaoJ Z, et al. Study on thermal stability and thermal safety of cumene hydroperoxide[J]. China Safety Science Journal, 2011, 21(6): 116-122.
25 DuhY S, KaoC S, HwangH H, et al. Thermal decomposition kinetics of cumene hydroperoxide[J]. Process Safety & Environmental Protection, 1998, 76(4): 271-276.
26 WilberforceJ K. Comparison of methods of determination of adiabatic times to maximum rate of exothermic reactions[J]. Journal of Thermal Analysis, 1982, 25(2): 593-596.
27 KossoyA, MisharevP, BelochvostovV. Peculiarities of calorimetric data processing for kinetics evaluation in reaction hazard assessment[C]// Calorimetry Conference. 1998.
28 GaoH, ChenL, ChenW, et al. Thermal stability evaluation of β-artemether by DSC and ARC[J]. Thermochimica Acta, 2013, 569: 134-138.
29 胡荣祖, 史启祯. 热分析动力学[M]. 北京: 科学出版社, 2001: 236-257.
HuR Z, ShiQ Z. Thermal Analysis Kinetics[M]. Beijing: Science Press, 2001: 236-257.
30 杨庭, 陈利平, 陈网桦, 等. 分解反应自催化性质快速鉴别的实验方法[J]. 物理化学学报, 2014, 30(7): 1215-1222.
YangT, ChenL P, ChenW H, et al. Experimental method on rapid identification of autocatalysis in decomposition reactions[J]. Acta Physico-Chimica Sinica, 2014, 30(7): 1215-1222.
31 陈网桦, 陈利平, 杨庭, 等. 自催化鉴别方法在物质热稳定性分析中的应用[C]// 中国化学会学术年会, 2014.
ChenW H, ChenL P, YangT, et al. Application of identified method for autocatalytic decomposition on thermal stability of material[C]// Chinese Chemical Society, 2014.
[1] Sheng XU, Lingli LIU, Meng CAO, Shangxi ZHANG, Xin DAI, Yang LIU, Zhenxi WANG. Formation of framework supported pore for PVA/ZnO composite and Pb(Ⅱ) adsorption [J]. CIESC Journal, 2019, 70(S1): 130-140.
[2] Daofeng MEI, Haibo ZHAO, Shuiping YAN. Thermodynamics simulation of biogas fueled chemical looping reforming for H2 generation using NiO/Ca2Al2SiO7 [J]. CIESC Journal, 2019, 70(S1): 193-201.
[3] Linchen ZHOU, Zhigao SUN, Ling LU, Sai WANG, Juan LI, Cuimin LI. Formation and stability of HCFC–141b hydrate in organic phase change emulsion [J]. CIESC Journal, 2019, 70(5): 1674-1681.
[4] Shuang ZHANG, Lei ZHAO, Lin GAO, Hua LIU. Exploration on thermo-mechanical characteristics of energy piles with double-U pipes buried in parallel by means of numerical simulations [J]. CIESC Journal, 2019, 70(5): 1750-1760.
[5] Qin WANG, Bingjian ZHANG, Chang HE, Qinglin CHEN. Solvent evaluation model base on energy consumption objective for aromatic extraction distillation units [J]. CIESC Journal, 2019, 70(5): 1815-1822.
[6] Yinjiao SU, Xuan LIU, Lifeng LI, Xiaohang LI, Ping JIANG, Yang TENG, Kai ZHANG. Distribution characteristics of mercury speciation in coals with three different ranks [J]. CIESC Journal, 2019, 70(4): 1559-1566.
[7] Qichao XU, Jinbo JIANG, Xudong PENG, Jiyun LI, Yuming WANG. Unified model and geometrical optimization of bi-directional groove of dry gas seal based on genetic algorithm [J]. CIESC Journal, 2019, 70(3): 995-1005.
[8] Kaixiang PENG, Chuanfang ZHANG, Liang MA, Jie DONG, Ruihua JIAO, Peng TANG. System-levels-based holographic fault diagnosis for complex industrial processes [J]. CIESC Journal, 2019, 70(2): 590-598.
[9] Chunyan LU, Wei LI. Fault diagnosis method of petrochemical air compressor based on deep belief network [J]. CIESC Journal, 2019, 70(2): 757-763.
[10] Shan DOU, Guangyu ZHANG, Zhihua XIONG, Huangang WANG. Danger situation awareness of chemical industry park based on multiple source data fusion [J]. CIESC Journal, 2019, 70(2): 460-466.
[11] Bo DAI, Zeyu ZHOU, Yan ZHANG, Shuangshuang LIN, Xuejun LIU. Design of safe distance monitoring system for hazardous chemicals storage stack [J]. CIESC Journal, 2019, 70(2): 707-715.
[12] Sunxi ZHOU, Xuelai ZHANG, Sheng LIU, Qiyang CHEN, Xiaofeng XU, Yinghui WANG. Preparation and properties of decyl alcohol-palmitic acid/expanded graphite low temperature composite phase change material [J]. CIESC Journal, 2019, 70(1): 290-297.
[13] Xiangkun MENG, Guoming CHEN, Chunliang ZHENG, Xiangfei WU, Gaogeng ZHU. Risk evaluation model of deepwater drilling blowout accident based on risk entropy and complex network [J]. CIESC Journal, 2019, 70(1): 388-397.
[14] Jiong DING, Qi CHEN, Qiyue XU, Suijun YANG, Shuliang YE. ARC thermal inertia correction method based on C80 data merging [J]. CIESC Journal, 2019, 70(1): 417-424.
[15] Yaqiang DUAN, Xianfeng HE, Tong WU, Yanping ZHANG, Zhiguo ZHAO. Preparation and application of graphene lubricant additive with extreme-pressure performance [J]. CIESC Journal, 2019, 70(1): 360-369.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LING Lixia, ZHANG Riguang, WANG Baojun, XIE Kechang. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] LEI Zhigang, LONG Aibin, JIA Meiru, LIU Xueyi. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] SU Haifeng, LIU Huaikun, WANG Fan, LÜXiaoyan, WEN Yanxuan. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] WANG Jianlin, XUE Yaoyu, YU Tao, ZHAO Liqiang. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] SUN Fubao, MAO Zhonggui, ZHANG Jianhua, ZHANG Hongjian, TANG Lei, ZHANG Chengming, ZHANG Jing, ZHAI Fangfang. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] Gao Ruichang, Song Baodong and Yuan Xiaojing( Chemical Engineering Research Center, Tianjin University, Tianjin 300072). LIQUID FLOW DISTRIBUTION IN GAS - LIQUID COUNTER - CONTACTING PACKED COLUMN[J]. , 1999, 50(1): 94 -100 .
[7] Su Yaxin, Luo Zhongyang and Cen Kefa( Institute of Thermal Power Engineering , Zhejiang University , Hangzhou 310027). A STUDY ON THE FINS OF HEAT EXCHANGERS FROM OPTIMIZATION OF ENTROPY GENERATION[J]. , 1999, 50(1): 118 -124 .
[8] Luo Xiaoping(Department of Industrial Equipment and Control Engineering , South China University of Technology, Guangzhou 510641)Deng Xianhe and Deng Songjiu( Research Institute of Chemical Engineering, South China University of Technology, Guangzhou 5106. RESEARCH ON FLOW RESISTANCE OF RING SUPPORT HEAT EXCHANGER WITH LONGITUDINAL FLUID FLOW ON SHELL SIDE[J]. , 1999, 50(1): 130 -135 .
[9] Jin Wenzheng , Gao Guangtu , Qu Yixin and Wang Wenchuan ( College of Chemical Engineering, Beijing Univercity of Chemical Technology, Beijing 100029). MONTE CARLO SIMULATION OF HENRY CONSTANT OF METHANE OR BENZENE IN INFINITE DILUTE AQUEOUS SOLUTIONS[J]. , 1999, 50(2): 174 -184 .
[10]

LI Qingzhao;ZHAO Changsui;CHEN Xiaoping;WU Weifang;LI Yingjie

.

Combustion of pulverized coal in O2/CO2 mixtures and its pore structure development

[J]. , 2008, 59(11): 2891 -2897 .