CIESC Journal ›› 2019, Vol. 70 ›› Issue (3): 874-882.doi: 10.11949/j.issn.0438-1157.20180661

• Fluid dynamics and transport phenomena • Previous Articles     Next Articles

Heat transfer performance of pulsating heat pipe with hygroscopic salt solution

Hang ZHANG1(),Jianhua WENG1(),Xiaoyu CUI2   

  1. 1. College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
    2. School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • Received:2018-06-15 Revised:2018-11-16 Online:2019-03-05 Published:2018-12-13
  • Contact: Jianhua WENG;


The heat transfer characteristics of the 10% (mass) concentration LiCl hygroscopic salt solution as the oscillating heat pipe of the working fluid were studied. The 10% LiCl salt solution was prepared to test the PHP evaporator section temperature and the thermal resistance at 45%—90% filling rate and 10—100 W heating power. Besides, that of deionized water PHP was compared. The results show that at the low filling rate of 45% and 55%, when the heating power reaches over 50 W, the thermal resistance of LiCl solution pulsating heat pipe is obviously lower than that of the deionized water PHP. LiCl solution can effectively delay the occurrence of dry-out phenomenon and reduce the thermal resistance of the PHP. At the filling rate of 62%, when the heating power reaches over 35 W, the evaporator section temperature curve of LiCl solution PHP has higher oscillation frequency and smaller oscillation amplitude. The thermal resistance of LiCl solution PHP at different heat power is lower than that of the deionized water PHP. At the high filling rate of 80% and 90%, the temperature curves of the evaporator section of the two types of PHP are similar for the average temperature, the oscillation frequency and the amplitude. The thermal resistance is relatively close.

Key words: pulsating heat pipe, lithium chloride, salt solution, evaporation, heat transfer, binary mixture

CLC Number: 

  • TK 124


Schematic diagram of experimental system of PHP"


PHP prototype and thermocouple arrangement"

Table 1

Physical properties of working fluids at standard atmospheric pressure and 20℃"

工质沸点/℃密度/(kg·m-3)热导率/(W·(m·℃) -1)动力黏度η×106/(Pa·s)表面张力σ×103/(N·m-1)


Temperature oscillation curves at low charge rate evaporation end"


Temperature change curves at 45%, 55% low charge rate evaporation end"


Temperature oscillation curves at 62% charge rate evaporation end"


Temperature change curves at 62%, 70% medium charge rate evaporation end"


Temperature oscillation curves at 80% charge rate evaporation end"


Temperature oscillation curves at 90% charge rate evaporation end"


Temperature changes curve at 80%,90% high charge rate evaporation end"


Temperature change curves at 45%, 55% low charge rate condensation end"


Temperature change curves at 62%, 70% charge rate condensation end"


Temperature change curves at 80%,90% high charge rate condensation end"


Thermal resistance change curves at 45%, 55% low charge rate"


Thermal resistance change curves at 62%、70% medium charge rate"


Thermal resistance change curves at 80%,90% high charge rate"

1 AkachiH, PolasekF, StulcP. Pulsating heat pipe[C]//Proceeding of 5th International Heat Pipe Symposium. Melbourne, 1996.
2 施赛燕, 崔晓钰, 周宇, 等. 石墨烯/去离子水纳米流体振荡热管传热性能[J].化工学报, 2016, 67(12): 4944-4950.
ShiS Y, CuiX Y, ZhouY, et al. Heat transfer performance of pulsating heat pipe with graphene aqueous nanofluids[J]. CIESC Journal, 2016, 67(12): 4944-4950.
3 屈健, 吴慧英. 微型硅基振荡热管传热特性[J].化工学报, 2011, 62(11): 3046-3052.
QuJ, WuH Y. Thermal performance of micro pulsating heat pipe[J]. CIESC Journal, 2011, 62(11): 3046-3052.
4 GiK, SatoF, MaezawaS.Flow visualization experiment on oscillating heat pipe[C]//International Heat Pipe Conference.Japan, 1999: 659-660.
5 SunQ, QuJ, LiX J, et al. Experimental investigation of thermo-hydrodynamic behavior in a closed loop oscillating heat pipe[J]. Experimental Thermal and Fluid Science, 2017, 82: 450-458.
6 KhandekarS, GrollM. An insight into thermo-hydrodynamic coupling in closed loop pulsating heat pipes[J]. International Journal of Thermal Sciences, 2004, 43(1): 13-20.
7 商福民, 刘登瀛, 冼海珍. 振荡热管内不同形态纳米颗粒流动及传热特性[J].化工学报, 2007, 58(9): 2200-2204.
ShangF M, LiuD Y, XianH Z. Flow and heat transfer characteristics of different forms of nanometer particles in oscillating heat pipe[J]. Journal of Chemical Industry and Engineering(China), 2007, 58(9): 2200-2204.
8 RittidechS, TerdtoonP, TantakomP, et al. Effect of inclination angles, evaporator section lengths and working fluid properties on heat transfer characteristics of a closed-end oscillating heat pipe[C] //Proceedings of 6th International Heat Pipe Symposium. Chiengmai , 2000: 413-421.
9 SchneiderM, KhandekarS, SchaeferP, et al. Visualization of thermo fluid dynamic phenomena in flat plate closed loop pulsating heat pipes[C]//Proceedings of 6th International Heat Pipe Symposium. Chiengmai, 2000: 366-380.
10 蔡骥驰, 王瑞祥, 徐荣吉, 等. SDBS对铜-水脉动热管启动及传热性能影响[J].化工学报, 2016, 67(5): 1852-1857.
CaiJ C, WangR X, XuR J, et al. Influence of SDBS on start time and heat transfer performance of pulsating heat pipe[J]. CIESC Journal, 2016, 67(5): 1852-1857.
11 SarangiR K, RaneM V. Experimental investigations for start up and maximum heat load of closed loop pulsating heat pipe[J].Procedia Engineering, 2013, 51: 683-687 .
12 徐进良, 张显明, 施慧烈. 脉冲热管中的热力型脉动现象及实验测量[J].自然科学进展, 2004, 14(4): 436- 441.
XuJ L, ZhangX M, ShiH L. Thermomechanical pulsation and experimental measurement on oscillating heat pipe[J].Progress in Natural Science Materials International, 2004, 14(4): 436- 441.
13 ChuH R, XieG Z, LiuL. Discussion on thermodynamic properties of binary mixture adaptation of pulsating heat pipe [J]. Refrigeration and Air-conditioning 2011, 25 (3): 216-219.
14 朱悦, 崔晓钰, 韩华. 水、丙酮混合工质振荡热管传热性能[J].化工学报, 2014, 65(8): 2940-2947.
ZhuY, CuiX Y, HangH. Heat transfer performance of pulsating heat pipes with water-acetone mixtures[J]. CIESC Journal, 2014, 65(8): 2940-2947.
15 崔晓钰, 段威威, 乔铁梁. 两组元乙醇基混合工质振荡热管的传热性能[J].化工学报, 2014, 65(10): 3852-3860.
CuiX Y, DuanW W, QiaoT L. Heat transfer performance of pulsating heat pipe with ethanol-based binary mixtures[J]. CIESC Journal, 2014, 65(10): 3852-3860.
16 ZhangY, FaghriA, ShafiM B. Capillary blocking in forced convective condensation in horizontal miniature channels[J]. ASME J. Heat Transfer, 2001, 123(3): 501-511.
17 曹小林, 席战利, 周晋, 等. 脉动热管运行可视化及传热与流动特性的实验研究[J]. 热能动力工程, 2004, 4: 411-415.
CaoX L, XiZ L, ZhouJ. Experimental investigation of the visualization of pulsating heat-pipe operation as well as heat transfer and flow characteristics[J]. Journal of Engineering for Thermal Energy and Power, 2004, 4: 411-415.
18 GiK. Flow visualization experiment on oscillating capillary heat pipe[C]//11th International Heat Pipe Conference. Tokyo, 1999.
19 崔晓钰, 李治华, 孙慎德. 振荡热管的热阻变化规律及烧干特性[J].化工学报, 2013, 64(6): 2022-2028.
CuiX Y, LiZ H, SunS D. Thermal resistance variation and dryout phenomenon of pulsating heat pipe[J]. CIESC Journal, 2013, 64(6): 2022-2028.
20 赵相相, 张燕, 丁云飞, 等. 除湿溶液表面蒸汽压的实验研究[J].暖通空调, 2007, 37(4): 15-18.
ZhaoX X, ZhangY, DingY F, et al. Experiment on surface vapor pressure of liquid desiccant[J]. Journal Heating Ventilating and Airconditioning, 2007, 37(4): 15-18.
21 徐惠斌, 胡自成, 宋新南, 等. 高浓度氯化锂水溶液沸腾换热特性实验[J].长春工业大学学报(自然科学版), 2012, 33(4): 465-468.
XuH B, HuZ C, SongX N, et al. Experiment study on the of concentrated boiling heat transfer property aqueous LiCl solution[J]. Journal of Changchun University of Technology, 2012, 33(4): 465-468.
22 CuiQ. The effect of dissolving gases or solids in water droplets boiling on a hot surface[J].Journal of Heat Transfer, 2001, 123: 719-728.
23 CuiQ. The effect of dissolving salts in water sprays used for quenching a hot surface(Ⅱ): Spray cooling[J].Int. J. Heat Mass Trans., 2003, 125: 333-338.
24 JamialahmadiM, HelalizadehA, SteinhagenH M. Pool boiling heat transfer to electrolyte solutions[J].International Journal of Heat and Mass Transfer, 2004, 47: 729-742.
25 郝婷婷, 马学虎, 兰忠, 等. 超疏水和超亲水表面对脉动热管性能的影响[J].工程热物理学报, 2015, 36(12): 2670-2673.
HaoT T, MaX H, LanZ, et al. Experimental investigation of the effects of superhydrophobic and superhydrophilic surfaces on the pulsating heat pipe[J]. Journal of Engineering Thermophysics, 2015, 36(12): 2670-2673.
26 曲伟, 马同泽. 脉动热管的工质流动和传热特性实验研究[J].工程热物理学报, 2002, 23(5): 596-598.
QuW, MaT Z. Experimental investigation on flow and heat transfer of pulsating heat pipe[J]. Journal of Engineering Thermophysics, 2002, 23(5): 596-598.
27 HuY X, LiuT Q, LiX Y, et al. Heat transfer enhancement of micro oscillating heat pipes with self-rewetting fluid[J]. International Journal of Heat and Mass Transfer, 2017, 70: 496-503.
28 HaoT, MaX, LanZ , et al. Effects of hydrophobic surface effect on heat transfer performance and oscillating motion for an oscillating heat pipe[J].International Journal of Heat and Mass Transfer, 2014, 72: 50-65.
29 WangX H, ZhengH C, SiM Q, et al. Experimental investigation of the influence of surfactant on the heat transfer performance of pulsating heat pipe[J]. International Journal of Heat and Mass Transfer, 2015, 83: 586-590.
30 邱成悌, 赵亨殳, 蒋全兴. 电子设备结构设计原理[M]. 南京: 东南大学出版社, 2005.
QiuC T, ZhaoH S, JangQ X. Structure Design Principle of Electronic Equipment[M].Nanjing: Southeast University Press, 2005.
[1] Siyu SHAN, Hongbo TAN. Study on heat and mass transfer characteristics outside flat tube for evaporative condensers [J]. CIESC Journal, 2019, 70(S1): 69-78.
[2] Zhe LI, Wenlong WANG, Meng ZHANG, Jing SUN, Yanpeng MAO, Xiqiang ZHAO, Zhanlong SONG. Low frequency electromagnetic parameters and absorbing heat generation properties of carbon nanotubes [J]. CIESC Journal, 2019, 70(S1): 28-34.
[3] Nenglian FENG, Ruijin MA, Longke CHEN, Shikang DONG, Xiaofeng WANG, Xingyu ZHANG. Heat transfer characteristics of honeycomb liquid-cooled power battery module [J]. CIESC Journal, 2019, 70(5): 1713-1722.
[4] Yuting CHEN, Yanyan XU, Lei WANG, Shuang YE, Weiguang HUANG. Effect of evaporator heat transfer process on selection of mixture and operating condition in ORC system [J]. CIESC Journal, 2019, 70(5): 1723-1733.
[5] Shuang ZHANG, Lei ZHAO, Lin GAO, Hua LIU. Exploration on thermo-mechanical characteristics of energy piles with double-U pipes buried in parallel by means of numerical simulations [J]. CIESC Journal, 2019, 70(5): 1750-1760.
[6] Liangjie JIN, Peng BAI, Xianghai GUO. Energy-saving optimization of partial diabatic distillation with side streams [J]. CIESC Journal, 2019, 70(5): 1804-1814.
[7] Jianguo YAN, Fengling ZHU, Pengcheng GUO, Xingqi LUO. Convective heat transfer of supercritical CO2 flowing a mini circular tube under high heat flux and low mass flux conditions [J]. CIESC Journal, 2019, 70(5): 1779-1787.
[8] Junlan YANG, Shuying NING. Study on boiling heat transfer characteristics of CO2/ lubricating oil mixture in mini-channel tube [J]. CIESC Journal, 2019, 70(5): 1772-1778.
[9] Yexia CHAI, Huayan CHEN, Yue JIA, Dandan LI, Chunrui WU, Xiaolong LYU. Enhancement on steam dropwise condensation heat transfer with superhydrophobic surfaces of PVDF hollow fiber heat exchange tubes [J]. CIESC Journal, 2019, 70(4): 1331-1339.
[10] Xi CHEN, Yi LIN, Shuai SHAO. Influences of inclination angle and heating power on heat transfer performance of ethane pulsating heat pipe [J]. CIESC Journal, 2019, 70(4): 1383-1389.
[11] Yaru FAN, Zhihao CHEN, Yanjie ZHAO, Yoshio UTAKA. Characteristics of spontaneous movement of condensate drop on uniform temperature surface during condensation of binary vapor mixture [J]. CIESC Journal, 2019, 70(4): 1358-1366.
[12] Bingguo ZHU, Xinming WU, Liang ZHANG, Enhui SUN, Haisong ZHANG, Jinliang XU. Flow and heat transfer characteristics of supercritical CO2 in vertical tube [J]. CIESC Journal, 2019, 70(4): 1282-1290.
[13] Minghan ZHU, Pengfei BAI, Yanxin HU, Jin HUANG. Heat transfer performance of ultra-thin plate heat pipe with sintered porous channels structures wick [J]. CIESC Journal, 2019, 70(4): 1349-1357.
[14] Suli SHI, Yuanwei LU, Qiang YU, Yuting WU. Optimization of heat removal modes for heat exchanger in molten salt single storage tank [J]. CIESC Journal, 2019, 70(3): 857-864.
[15] Jingcai CHANG, Xiang WANG, Peng WANG, Lin CUI, Jun LI, Xin ZHANG, Chunyuan MA. Evaporation characteristics of water film over collecting electrode in high-voltage electrical field [J]. CIESC Journal, 2019, 70(3): 865-873.
Full text



[1] LING Lixia, ZHANG Riguang, WANG Baojun, XIE Kechang. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] LEI Zhigang, LONG Aibin, JIA Meiru, LIU Xueyi. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] SU Haifeng, LIU Huaikun, WANG Fan, LÜXiaoyan, WEN Yanxuan. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] WANG Jianlin, XUE Yaoyu, YU Tao, ZHAO Liqiang. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] SUN Fubao, MAO Zhonggui, ZHANG Jianhua, ZHANG Hongjian, TANG Lei, ZHANG Chengming, ZHANG Jing, ZHAI Fangfang. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] Gao Ruichang, Song Baodong and Yuan Xiaojing( Chemical Engineering Research Center, Tianjin University, Tianjin 300072). LIQUID FLOW DISTRIBUTION IN GAS - LIQUID COUNTER - CONTACTING PACKED COLUMN[J]. , 1999, 50(1): 94 -100 .
[7] Su Yaxin, Luo Zhongyang and Cen Kefa( Institute of Thermal Power Engineering , Zhejiang University , Hangzhou 310027). A STUDY ON THE FINS OF HEAT EXCHANGERS FROM OPTIMIZATION OF ENTROPY GENERATION[J]. , 1999, 50(1): 118 -124 .
[8] Luo Xiaoping(Department of Industrial Equipment and Control Engineering , South China University of Technology, Guangzhou 510641)Deng Xianhe and Deng Songjiu( Research Institute of Chemical Engineering, South China University of Technology, Guangzhou 5106. RESEARCH ON FLOW RESISTANCE OF RING SUPPORT HEAT EXCHANGER WITH LONGITUDINAL FLUID FLOW ON SHELL SIDE[J]. , 1999, 50(1): 130 -135 .
[9] Jin Wenzheng , Gao Guangtu , Qu Yixin and Wang Wenchuan ( College of Chemical Engineering, Beijing Univercity of Chemical Technology, Beijing 100029). MONTE CARLO SIMULATION OF HENRY CONSTANT OF METHANE OR BENZENE IN INFINITE DILUTE AQUEOUS SOLUTIONS[J]. , 1999, 50(2): 174 -184 .

LI Qingzhao;ZHAO Changsui;CHEN Xiaoping;WU Weifang;LI Yingjie


Combustion of pulverized coal in O2/CO2 mixtures and its pore structure development

[J]. , 2008, 59(11): 2891 -2897 .