CIESC Journal ›› 2019, Vol. 70 ›› Issue (3): 1236-1242.doi: 10.11949/j.issn.0438-1157.20180654

• Process safety • Previous Articles    

Analysis of fire suppression effectiveness of ultra-fine water mist containing iron compounds additives in cup burner

Tianshui LIANG1(),Zongying WANG1,Kun GAO1,Runwan LI1,Zheng WANG2,Wei ZHONG1(),Jun ZHAO1   

  1. 1. School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, Henan, China
    2. Industrial Technology Research Institute, Zhengzhou University, Zhengzhou 450001, Henan, China
  • Received:2018-06-14 Revised:2018-11-24 Online:2019-03-05 Published:2018-12-19
  • Contact: Wei ZHONG E-mail:liangtsh@zzu.edu.cn;zhongwei@zzu.edu.cn

Abstract:

To evaluate the fire suppression effectiveness of ultra-fine water mist containing iron compounds additives qualitatively and quantitively, a small-scale experiment platform was set up to explore the minimum extinguishing concentration of the water mist under different fuels. Ethanol and n-heptane were separately used as fuels. Air flow was kept as 60 L/min during experiments. The water mist content in the air was gradually increased by adjusting the power of atomizer. The critical fire suppression concentration was obtained until fire was extinguished. Furthermore, to understand the fire suppression mechanisms deeply, structures formed by iron oxides and H radicals were relaxed based on the density functional theory. The results show that ferrocene and ferrous sulfate can obviously reduce the minimum extinguishing concentration of ultra-fine water mist. The decreasing degree of minimum extinguishing concentration is not linear with the content of additives. There are optimal concentrations of iron compounds additives match to fire suppression effectiveness of the water mist. The optimal concentrations of ferrocene and ferrous sulfate are 0.01% and 1% respectively. The fire suppression effectiveness is affected by the type of fuels. Its order is as following in this experiment: ethanol > n-heptane. Fe(OH)2 formed by the reaction of iron oxide with H radical is an active catalytic substance capable of eliminating H radicals by chain reaction.

Key words: ultra-fine water mist, additive, minimum extinguishing concentration, radical, catalysis, reaction mechanism, density functional theory

CLC Number: 

  • TQ 569

Fig.1

Schematic diagram of experimental device"

Table 1

Preparation parameter of ferrocene dispersions"

二茂铁分散液浓度/%(mass) 二茂铁质量/g surfynol 465体积/ml
0 0 40
0.0040 0.8 40
0.0055 1.1 40
0.0065 1.3 40
0.0075 1.5 40
0.0080 1.6 40
0.0100 2.0 40
0.0150 3.0 40

Fig.2

Minimum extinguishing concentration of ultra-fine water mist containing ferrocene with different concentrations"

Fig.3

Minimum extinguishing concentration of ultra-fine water mist containing FeSO4 with different concentrations"

Fig.4

Optimal minimum extinguishing concentration of ultra-fine water mist containing different additives"

Fig.5

Process of H2 evolution under interaction between H atoms and FeO2(black—Fe atoms,gray—O atoms,white—H atoms)"

Fig.6

Process of H2 evolution under interaction between H atoms and FeO3(black—Fe atoms,gray—O atoms,white—H atoms)"

Fig.7

Schematic diagram of reaction pathways for Fe in flame"

1 Adiga K C , Hatcher Jr R F , Sheinson R S , et al . A computational and experimental study of ultra fine water mist as a total flooding agent[J]. Fire Safety Journal, 2007, 42(2): 150-160.
2 裴蓓, 余明高, 陈立伟, 等 . CO2-双流体细水雾抑制管道甲烷爆炸实验[J]. 化工学报, 2016, 67(7): 3101-3108.
Pei B , Yu M G , Chen L W , et al . Suppression effect of CO2-twin fluid water mist on methane/air explosion invented duct[J]. CIESC Journal, 2016, 67(7): 3101-3108.
3 纪虹, 杨克, 黄维秋, 等 . 超细水雾协同甲烷氧化菌降解与抑制甲烷爆炸的实验研究[J]. 化工学报, 2017, 68(11): 4461-4468.
Ji H , Yang K , Huang W Q , et al . Methane degradation and explosion inhibition by using ultrafine water mist containing methane oxidative bacteria-inorganic salt[J]. CIESC Journal, 2017, 68(11): 4461-4468.
4 Adiga K C . Ultrafine water mist fire suppression technology[J]. Fire Engineering, 2005, 158(1): 197-200.
5 Ramagopal A , Richard C . Ultra-fine water mist extinction dynamics of a co-flow diffusion flame[J]. Combustion Science & Technology, 2008, 180(9): 1659-1692.
6 Iii G G B , Beyler C L , Hansen R . The capabilities and limitations of total flooding, water mist fire suppression systems in machinery space applications[J]. Fire Technology, 2000, 36(1): 8-23.
7 余明高, 吴丽洁, 万少杰, 等 . 含NaCl荷电细水雾对甲烷爆炸火焰传播的抑制特性[J]. 化工学报, 2017, 68(11): 4445-4452.
Yu M G , Wu L J , Wan S J , et al . Inhibition characteristics on methane explosion flame propagation affected by charged water mist containing sodium chloride additive[J]. CIESC Journal, 2017, 68(11): 4445-4452.
8 Korobeinichev O P , Shmakov A G , Shvartsberg V M , et al . Fire suppression by low-volatile chemically active fire suppressants using aerosol technology[J]. Fire Safety Journal, 2012, 51(4): 102-109.
9 梁天水, 李润婉, 张单单, 等 . 含添加剂细水雾熄灭醇类火焰的有效性实验研究[J]. 郑州大学学报(工学版), 2018, 39(3): 5-9.
Liang T S , Li R W , Zhang D D , et al . Experimental study on the effectiveness of water mist containing additives to extinguish alcohol flame[J]. Zhengzhou University Journal (Engineering Science), 2018, 39(3): 5-9.
10 廖光煊, 丛北华, 况凯骞 . 铁基添加剂增强细水雾灭火性能的实验研究[J]. 工程热物理学报, 2005, 26(S1): 273-276.
Liao G X , Cong B H , Kuang K Q . Experimental study on the fire suppression effectiveness of water mist with iron compounds additives[J]. Journal of Engineering Thermophysics, 2005, 26(S1): 273-276.
11 余明高, 郝强, 段玉龙, 等 . 二茂铁灭火实验平台研制与灭火有效性研究[J]. 火灾科学, 2007, 16(2): 86-90.
Yu M G , Hao Q , Duan Y L , et al . Study on experimental platform and fire suppression effectiveness of ferrocene[J]. Fire Safety Science, 2017, 16(2): 86-90.
12 Reinelt D , Linteris G T . Experimental study of the inhibition of premixed and diffusion flames by iron pentacarbonyl[J]. Symposium on Combustion, 1996, 26(1): 1421-1428.
13 Guo H , Liu H . Ferrocene-based fire extinguishing composition: US8778213[P]. 2014.
14 Koshiba Y , Iida K , Ohtani H . Fire extinguishing properties of novel ferrocene/surfynol 465 dispersions[J]. Fire Safety Journal, 2015, 72: 1-6.
15 Koshiba Y , Ohtani H . Extinguishing pool fires with aqueous ferrocene dispersions containing gemini surfactants[J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 10-16.
16 Koshiba Y , Okazaki S , Ohtani H . Experimental investigation of the fire extinguishing capability of ferrocene-containing water mist[J]. Fire Safety Journal, 2016, 83: 90-98.
17 李志峰, 左秋玲 . 二茂铁对正庚烷池火抑制特性的实验研究[J]. 消防科学与技术, 2010, 29(9): 752-754.
Li Z F , Zuo Q L . Study on suppression characteristic of heptane fire and ferrocene[J]. Fire Science and Technology, 2010, 29(9): 752-754.
18 Vnapee M , Shirodkar P P . A study of flame inhibition by metal compounds[J]. Symposium on Combustion, 1979, 17(1): 787-795.
19 Rumminger M D , Reinelt D , Babushok V , et al . Numerical study of the inhibition of premixed and diffusion flames by iron pentacarbonyl[J]. Combustion & Flame, 1999, 128(1/2): 145-164.
20 Rumminger M D , Linteris G T . Numerical modeling of counter flow diffusion flames inhibited by iron pentacarbonyl[J]. Fire Safety Science, 2000, 6: 289-300.
21 Linteris G T . Final Report: Effective Non-Toxic Metallic Fire Suppressants [R]. USA: NIST, 2002.
22 Underwriters Laboratories Inc . Standard for halocarbon clean agent extinguishing system units: UL-2166[S]. USA: Northbrook, 1999.
23 National Fire Protection Association . Standard for clean agent fire extinguishing systems: NFPA 2001[S]. USA: Quincy, 2004.
24 Liang T S , Li R W , Li J , et al . Extinguishment of hydrocarbon pool fires by ultrafine water mist with ammonium/amidogen compound in an improved cup burner[J]. Fire & Materials, 2018, (3): 1-8.
25 Zhang T W , Han Z Y , Du Z M , et al . Application of thermal mechanism to evaluate the effectiveness of the extinguishment of CH4 /air cup-burner flame by water mist with additives[J]. International Journal of Hydrogen Energy, 2016, 41(33): 15078-15088.
26 Kresse G , Furthmuller J . Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50.
27 Kresse G , Furthmuller J . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev. B Condens. Matter, 1996, 54(16): 11169-11186.
28 Perdew J P , Burke K , Ernzerhof M . Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.
29 Blöchl P E . Projector augmented-wave method[J]. Phys. Rev. B Condens. Matter, 1994, 50(24): 17953-17979.
30 Wang Z Y , Liang T S , Yang, Y P, et al . High chemisorption abilities of hydrogen and oxygen on ultrasmall iron clusters: a first-principles study[J]. Chemical Physics Letters, 2018, 705: 59-64.
31 杨晓丽, 苏雄, 杨小峰, 等 . 负载型金属催化剂的热稳定机制[J]. 化工学报, 2016, 67(1): 73-82.
Yang X L , Su X , Yang X F , et al . Stabilization mechanism of supported metal catalyst[J]. CIESC Journal, 2016, 67(1): 73-82.
32 Yang X F , Wang A , Qiao B , et al . Single-atom catalysts: a new frontier in heterogeneous catalysis[J]. Accounts of Chemical Research, 2013, 46(8): 1740.
33 唐华浩, 孙俊, 李格升, 等 . 乙醇预混层流火焰结构的模拟研究[J]. 武汉理工大学学报, 2009, 31(2): 66-69.
Tang H H , Sun J , Li G S , et al . Simulation research of 1D laminar premix flame[J]. Journal of Wuhan University of Technology, 2009, 31(2): 66-69.
34 秦先锋, 袁银男, 李仁春, 等 . 正庚烷低压预混燃烧火焰中间产物生成特性分析[J]. 机械设计与制造, 2014, (3): 262-264.
Qin X F , Yuan Y N , Li R C , et al . Combustion intermediate radical characteristics of n-heptane in a low-pressure premixed laminar flame[J]. Machinery Design & Manufacture, 2014, (3): 262-264.
[1] Yandong MAO, Kezhong LI, Lei LIU, Feng XIN. Effect of additives on ash sintering behaviors and gasification performance in catalytic coal gasification process [J]. CIESC Journal, 2019, 70(5): 1951-1963.
[2] Xinbo WANG, Yanping ZHANG, Xiuping LI, Rongxiang ZHAO. Preparation of EMIES/nC9H10O2-based deep eutectic solvents and its oxidative desulfurization activity [J]. CIESC Journal, 2019, 70(4): 1567-1574.
[3] Yunbiao DUAN, Cunying XU, Xiang WANG, Hai LIU, Mengting HUANG. Synthesis of Fe3+-doped ZnO nanostructures by antisolvent precipitation method and their visible photocatalytic activity [J]. CIESC Journal, 2019, 70(3): 1198-1207.
[4] Junren BAI, Jun YI, Qian LI, Ling WU, Xuemei CHEN. Multi-objective optimization of QPSO for thereaction-regeneration process [J]. CIESC Journal, 2019, 70(2): 750-756.
[5] Yi ZHU, Hao WANG, Liping CHEN, Zichao GUO, Zhongqi HE, Wanghua CHEN. Calculate time to maximum rate under adiabatic condition by numerical calculation method [J]. CIESC Journal, 2019, 70(1): 379-387.
[6] Chen CHEN, Ying WANG, Hong LIU, Yan CHEN, Mingdong YAO, Wenhai XIAO. Exploring the key structural properties affecting the function of multi-step phytoene dehydrogenase CrtI [J]. CIESC Journal, 2019, 70(1): 189-198.
[7] Jingtao CAI, Daixi LI, Baolin LIU, Hansen LUAN, Baisong GUO, Dongqing WEI, Hao WANG. Controllable crystallization of urea (520) crystal plane by molecular simulation [J]. CIESC Journal, 2019, 70(1): 128-135.
[8] XUE Chao, MAO Yanpeng, WANG Wenlong, SONG Zhanlong, ZHAO Xiqiang, SUN Jing, WANG Yanxiang. Treatment of phenol wastewater by microwave catalytic wet oxidation under high pressure [J]. CIESC Journal, 2018, 69(S2): 210-217.
[9] XIE Huaqing, ZHANG Weidong, LIN Heyong, YU Qingbo. Hydrogen production via sorption-enhanced steam reforming of tar [J]. CIESC Journal, 2018, 69(S2): 466-472.
[10] CHEN Xiuying, XIE Huilin, HU Wenbin, ZHOU Xinhua, ZHOU Hongjun, SHU Xugang. Preparation and characterization of MCM-41 supported Pt-Al catalysts [J]. CIESC Journal, 2018, 69(S1): 72-79.
[11] GENG Lili, YANG Kaixu, ZHANG Nuowei, CHEN Binghui. Synergetic effect of Ru and Cu on catalytic wet oxidation of ammonia-wastewater [J]. CIESC Journal, 2018, 69(9): 3869-3878.
[12] YU Lei, DAI Kangxu, LU Hao, FANG Yanxiong, CAO Hua, HAN Lifen, ZHAO Hongbin, LI Shijuan. Preparation and tribological properties of nitrogen-containing heterocyclic ester or amide derivatives [J]. CIESC Journal, 2018, 69(9): 4083-4089.
[13] NIE Shidong, LI Jiangtao, ZHANG Zhiying, LIU Yun, LIU Chunyan. Synthesis and properties of hierarchical structure silver micro-nanocrystals [J]. CIESC Journal, 2018, 69(9): 4090-4096.
[14] SHI Dezhi, WANG Pan, HU Chunyan, LI Pengfei, ZHANG Chao, WEI Yunmei, GU Li. Synergistic effect of silicon-aluminum addition and seed-induced on stabilization of heavy metals in MSW incineration fly ash during hydrothermal process [J]. CIESC Journal, 2018, 69(8): 3651-3661.
[15] CUI Jiandong, CUI Zhaohui, SU Zhiguo, ZHENG Chunyang, MA Guanghui, ZHANG Songping. Bioactive coating prepared by bio-3D printing of castor oil-based waterborne polyurethane mixed with carbonic anhydrase [J]. CIESC Journal, 2018, 69(8): 3577-3584.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LING Lixia, ZHANG Riguang, WANG Baojun, XIE Kechang. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] LEI Zhigang, LONG Aibin, JIA Meiru, LIU Xueyi. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] SU Haifeng, LIU Huaikun, WANG Fan, LÜXiaoyan, WEN Yanxuan. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] WANG Jianlin, XUE Yaoyu, YU Tao, ZHAO Liqiang. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] SUN Fubao, MAO Zhonggui, ZHANG Jianhua, ZHANG Hongjian, TANG Lei, ZHANG Chengming, ZHANG Jing, ZHAI Fangfang. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] Gao Ruichang, Song Baodong and Yuan Xiaojing( Chemical Engineering Research Center, Tianjin University, Tianjin 300072). LIQUID FLOW DISTRIBUTION IN GAS - LIQUID COUNTER - CONTACTING PACKED COLUMN[J]. , 1999, 50(1): 94 -100 .
[7] Su Yaxin, Luo Zhongyang and Cen Kefa( Institute of Thermal Power Engineering , Zhejiang University , Hangzhou 310027). A STUDY ON THE FINS OF HEAT EXCHANGERS FROM OPTIMIZATION OF ENTROPY GENERATION[J]. , 1999, 50(1): 118 -124 .
[8] Luo Xiaoping(Department of Industrial Equipment and Control Engineering , South China University of Technology, Guangzhou 510641)Deng Xianhe and Deng Songjiu( Research Institute of Chemical Engineering, South China University of Technology, Guangzhou 5106. RESEARCH ON FLOW RESISTANCE OF RING SUPPORT HEAT EXCHANGER WITH LONGITUDINAL FLUID FLOW ON SHELL SIDE[J]. , 1999, 50(1): 130 -135 .
[9] Jin Wenzheng , Gao Guangtu , Qu Yixin and Wang Wenchuan ( College of Chemical Engineering, Beijing Univercity of Chemical Technology, Beijing 100029). MONTE CARLO SIMULATION OF HENRY CONSTANT OF METHANE OR BENZENE IN INFINITE DILUTE AQUEOUS SOLUTIONS[J]. , 1999, 50(2): 174 -184 .
[10]

LI Qingzhao;ZHAO Changsui;CHEN Xiaoping;WU Weifang;LI Yingjie

.

Combustion of pulverized coal in O2/CO2 mixtures and its pore structure development

[J]. , 2008, 59(11): 2891 -2897 .