CIESC Journal ›› 2019, Vol. 70 ›› Issue (1): 290-297.doi: 10.11949/j.issn.0438-1157.20180646

• Material science and engineering, nanotechnology • Previous Articles     Next Articles

Preparation and properties of decyl alcohol-palmitic acid/expanded graphite low temperature composite phase change material

Sunxi ZHOU1,2(),Xuelai ZHANG1(),Sheng LIU2,Qiyang CHEN1,Xiaofeng XU1,Yinghui WANG1   

  1. 1. Cool Storage Technology Institute, Shanghai Maritime University, Shanghai 201306, China
    2. Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
  • Received:2018-06-12 Revised:2018-10-08 Online:2019-01-05 Published:2018-10-25
  • Contact: Xuelai ZHANG E-mail:1373988947@qq.com;xlzhang@shmtu.edu.cn

Abstract:

To find a low temperature phase change material with a temperature range of 2—3℃, a sterol-palmitic acid (DA-PA) binary composite phase change material was prepared by eutectic method based on theoretical calculation. To improve the thermal conductivity, the DA-PA/EG composite phase change material with the optimal mass ratio of 15:1 was obtained by using the porous characteristics of expanded graphite (EG). The structure and properties of the composite phase change material were studied by DSC, step cooling curve, FI-TR, SEM and high-low temperature cycle test. The results show that when the mass ratio of DA-PA was 97.8:2.2, the phase change temperature was 2.9℃ and the latent heat was 203.6 J·g-1. After vacuum adsorption, DA-PA was uniformly encapsulated in the porous network structure of EG. The phase change temperature of DA-PA/EG was 2.7℃, the latent heat was 193.9 J·g-1, and the thermal conductivity was 1.416W·(m·K)-1, which was 4.3 times higher than DA-PA. After 100 times of high-low temperature cycles, the thermal properties of DA-PA/EG did not change much and still maintained good stability. The results show that the DA-PA/EG composite phase change material has great application value in the cold chain logistics.

Key words: composites, phase change, heat conduction, adsorption, stability

CLC Number: 

  • TK 02

Table 1

Experimental instruments"

EquipmentModelAccuracy
precision electronic balanceMSl05DU±0.01 mg
magnetic stirrerHJ-6A
cryogenic bathDC-6515±0.1℃
Agilent data acquisition instrument34972A±0.01℃
differential scanning calorimetry(DSC)

DSC200F3

temperature<0.1℃, enthalpy<0.1%
hot disk thermal constant analyzer

TPS500

<2%

electron microscope scanner(SEM)

KYKY-EM6000

box resistance furnaceSX2-4-10A
vacuum drying ovenDZF-6020
Fourier infrared spectrometerTENSOR37
high and low temperature alternating box

YSGJW-100C

±0.5℃

Fig.1

Step cooling experimental device"

Fig.2

DSC curve of DA-PA binary eutectic mixture"

Fig.3

Step cooling curve of DA-PA binary eutectic mixture"

Fig.4

DA-PA/EG before and after heat treatment"

Table 2

Sample quality changes before and after heat treatment in different proportions"

Proportion (DA-PA:EG)Before heat treatment/gAfter heat treatment/gMass loss/gPercentage loss/%
10:10.400.3980.0020.50
11:10.400.3980.0020.50
12:10.400.3980.0020.50
13:10.400.3970.0030.75
14:10.400.3960.0041.00
15:10.400.3960.0041.00
16:10.400.3740.0266.50
17:10.400.3720.0287.00
18:10.400.3580.04210.5
19:10.400.3510.04912.25
20:10.400.3430.05714.25
21:10.400.3260.07418.50

Fig.5

Infrared spectra of composite phase change material"

Fig.6

Scanning electron microscope images of EG and DA-PA/EG"

Fig.7

DSC curve of DA-PA/EG"

Fig.8

Step cooling curves of phase change material before and after EG addition"

Fig.9

DSC curve of DA-PA/EG after cycling"

Fig.10

Step cooling curves of DA-PA/EG before and after cycle"

1 张仁元. 相变材料与相变储能技术[M]. 北京: 科学出版社, 2009: 2.
ZhangR Y. Phase Change Materials and Phase Change Energy Storage Technology [M].Beijing: Science Press, 2009: 2.
2 HasanM I, BashirH O, ShadhanA O. Experimental investigation of phase change materials for insulation of residential buildings[J]. Sustainable Cities & Society, 2018, 36(10): 42-58.
3 LaaouatniA, MartajN, BennacerR, et al. Phase change materials for improving the building thermal inertia[J]. Energy Procedia, 2017, 139(11): 744-749.
4 AhmedA, SiddiqueA K, LudwigN, et al. Design and optimization of a hybrid air conditioning system with thermal energy storage using phase change composite[J]. Energy Conversion and Management, 2018, 169(5): 404-418.
5 唐恒博, 武卫东, 苗朋柯, 等. 空调用二元有机相变蓄冷材料的理论预测与研究[J]. 化工新型材料, 2016, 44(3): 121-123.
TangH B, WuW D, MiaoP K, et al. Theoretical prediction and research of binary organic phase change cold storage materials for air conditioning [J]. New Chemical Materials, 2016, 44(3): 121-123.
6 KazemB, MahdiK, SeyedA K, et al.The experimental appraisement of the effect of energy storage on the performance of solar chimney using phase change material[J]. Solar Energy, 2018, 169(5): 411-423.
7 SuD, JiaY, LinY, et al. Maximizing the energy output of a photovoltaic–thermal solar collector incorporating phase change materials[J]. Energy & Buildings, 2017, 153(8): 382-391.
8 章学来, 陈裕丰, 曾涛, 等. 医药冷链物流用相变材料的研制[J]. 制冷与空调, 2017, 17(7): 43-46.
ZhangX L, ChenY F, ZengT, et al. Development of phase change materials for pharmaceutical cold chain logistics[J]. Refrigeration and Air-conditioning, 2017, 17(7): 43-46.
9 MeloneL, AltomareL, CigadaA, et al. Phase change material cellulosic composites for the cold storage of perishable products: from material preparation to computational evaluation[J]. Applied Energy, 2012, 89(1): 339-346.
10 谭爱龄, 陈璐, 柳建良. 高吸水性树脂复合相变材料的冻融特性[J]. 化工进展, 2011, 30(10): 2262-2265.
TanA L, ChenL, LiuJ L. Freeze-thaw characteristics of superabsorbent resin composite phase change materials[J]. Chemical Industry and Engineering Progress, 2011, 30(10): 2262-2265.
11 陈爱英, 汪学英, 曹学增. 相变储能材料的研究进展与应用[J]. 材料导报, 2003, 17(5): 42-44.
ChenA Y, WangX Y, CaoX Z. Research progress and application of phase change materials for energy storage[J]. Material Review, 2003, 17(5): 42-44.
12 曾翠华, 张仁元. 无机水合盐相变储热材料的过冷性研究[J]. 能源研究与信息, 2005, 21(1): 44-49.
ZengC H, ZhangR Y. Study on subcooling property of inorganic hydrated salt phase change thermal storage materials[J]. Energy Research and Information, 2005, 21(1): 44-49.
13 张奕, 张小松. 有机相变材料储能的研究和进展[J]. 太阳能学报, 2006, 27(7): 725-730.
ZhangY, ZhangX S. Research and development of organic phase change material energy storage[J]. Chinese Journal of Solar Energy, 2006, 27(7): 725-730.
14 张爱军, 孙志高, 蔡伟, 等. 二元有机复合相变材料性能实验研究[J]. 化工新型材料, 2016, 44(7): 127-129.
ZhangA J, SunZ G, CaiW, et al. Experimental study on the properties of binary organic composite phase change materials[J]. New Chemical Materials, 2016, 44(7): 127-129.
15 蔡伟, 孙志高, 马鸿凯, 等. 月桂酸-十四醇二元复合相变材料的相变特性[J]. 太阳能学报, 2017, 38(9): 2493-2497.
CaiW, SunZ G, MaH K, et al. Phase transition properties of lauric acid-tetradecanol binary composite phase change materials[J]. Journal of Solar Energy, 2017, 38(9): 2493-2497.
16 袁艳平, 白力, 牛犇. 脂肪酸二元低共熔混合物相变温度和潜热的理论预测[J]. 材料导报, 2010, 24(2): 111-113.
YuanY P, BaiL, NiuB. Theoretical prediction of phase transition temperature and latent heat of fatty acid binary eutectic mixtures[J]. Material Review, 2010, 24(2): 111-113.
17 LiM, KaoH, WuZ, et al. Study on preparation and thermal property of binary fatty acid and the binary fatty acids/diatomite composite phase change materials[J]. Applied Energy, 2011, 88(5): 1606-1612.
18 ZuoJ, LiW, WengL. Thermal performance of caprylic acid/1-dodecanol eutectic mixture as phase change material (PCM) [J]. Energy & Buildings, 2011, 43(1): 207-210.
19 郭勇, 朱阳倩, 伍乾, 等. 癸酸-肉豆蔻酸相变储热微胶囊的制备与表征[J]. 新型建筑材料, 2017, 44(10): 104-107.
GuoY, ZhuY Q, WuQ, et al. Preparation and characterization of decanoic acid-myristic acid phase change thermal storage microcapsules[J]. Novel Building Materials, 2017, 44(10): 104-107.
20 GuoJ, XiangH X, WangQ Q, et al. Preparation and properties of polyacrylonitrile fiber/binary of fatty acids composites as phase change materials[J]. Energy Sources, 2013, 35(11): 1064-1072.
21 李玉洋, 章学来, 徐笑锋, 等. 正辛酸-肉豆蔻酸低温相变材料的制备和循环性能[J]. 化工进展, 2018, 37(2): 689-693.
LiY Y, ZhangX L, XuX F, et al. Preparation and cycling performance of n-octanoic acid-myristic acid low temperature phase change material[J]. Chemical Industry and Engineering Progress, 2018, 37(2): 689-693.
22 黄艳, 章学来. 十二醇-癸酸-纳米粒子复合相变材料传热性能[J]. 化工学报, 2016, 67(6): 2271-2276.
HuangY, ZhangX L. Heat transfer performance of dodecyl alcohol-capric acid-nanoparticle composite phase change material [J]. Acta Chimica Sinica, 2016, 67 (6): 2271-2276.
23 刘臣臻. 相变微胶囊储能过程传热与流动特性研究[D]. 北京: 中国矿业大学, 2017.
LiuC Z. Study on heat transfer and flow characteristics of phase change microcapsule energy storage process[D]. Beijing: China University of Mining and Technology, 2017.
24 孙凯, 张步宁, 晏凤梅, 等. 石蜡微胶囊型相变储能材料制备及表征[J]. 化工进展, 2011, 30(12): 2676-2678.
SunK, ZhangB N, YanF M, et al. Preparation and characterization of paraffin microcapsule phase change energy storage materials[J]. Chemical Industry and Engineering Progress, 2011, 30(12): 2676-2678.
25 赵长颖, 潘智豪, 王倩, 等. 多孔介质的相变和热化学储热性能[J]. 科学通报, 2016, 61(17): 1897-1915.
ZhaoC Y, PanZ H, WangQ, et al. Phase transition and thermochemical heat storage properties of porous media[J]. Chinese Science Bulletin, 2016, 61(17): 1897-1915.
26 胡小冬, 高学农, 李得伦, 等. 石蜡/膨胀石墨定形相变材料的性能[J]. 化工学报, 2013, 64(10): 3831-3837.
HuX D, GaoX N, LiD L, et al. Properties of paraffin/expanded graphite shaped phase change materials[J]. CIESC Journal, 2013, 64(10): 3831-3837.
27 李云涛, 晏华, 汪宏涛, 等. 正癸酸-月桂酸-硬脂酸三元低共熔体系/膨胀石墨复合相变材料的制备与表征[J].材料导报, 2017, 31(2): 94-99.
LiY T, YanH, WangH T, et al. Preparation and characterization of ternary eutectic system/expanded graphite composite phase change materials with n-decanoic acid-lauric acid-stearic acid[J].Materials Review, 2017, 31(2): 94-99.
28 YangY, PangY, LiuY, et al. Preparation and thermal properties of polyethylene glycol/expanded graphite as novel form-stable phase change material for indoor energy saving[J]. Materials Letters, 2018, 216(1): 200-223.
29 翟天尧, 李廷贤, 仵斯, 等. 高导热膨胀石墨/硬脂酸定形相变储能复合材料的制备及储/放热特性[J]. 科学通报, 2018, 63(7): 674-683.
ZhaiT Y, LiT X, WuS, et al. Preparation and storage/exothermic characteristics of high thermal conductivity expanded graphite/stear stearic phase change energy storage composites[J]. Science Bulletin, 2018, 63(7): 674-683.
30 张寅平, 苏跃红. (准)共晶系相变材料融点及融解热的理论预测[J]. 中国科学技术大学学报, 1995, 25(4): 474-478.
ZhangY P, SuY H. Theoretical prediction of melting point and melting heat of eutectic phase change materials[J]. Journal of University of Science and Technology of China, 1995, 25(4): 474-478.
31 张玉辉, 刘海波, 赵丰东. 探讨用差示扫描量热法(DSC)测量相变材料相变温度和相变焓[J]. 中国建材科技, 2006, 15(4): 35-37.
ZhangY H, LiuH B, ZhaoF D. Discussion on differential scanning calorimetry (DSC) to measure phase change temperature and phase change of phase change materials[J]. China Building Materials Science and Technology, 2006, 15(4): 35-37.
[1] Hua CHEN, Xiuli LIU, Yaxing YANG, Liqiong ZHONG, Lei WANG, Na GAO. Numerical simulation of foam metal copper/paraffin phase change thermal storage process [J]. CIESC Journal, 2019, 70(S1): 86-92.
[2] Hao YANG, Eryan YAN. Simulation research of microwave heating efficiency for beamed energy thruster [J]. CIESC Journal, 2019, 70(S1): 93-98.
[3] Qiang YU, Yuanwei LU, Xiaopan ZHANG, Yuting WU. Effect of nanoparticles on thermal properties of molten salt composite heat storage materials [J]. CIESC Journal, 2019, 70(S1): 217-225.
[4] Sheng XU, Lingli LIU, Meng CAO, Shangxi ZHANG, Xin DAI, Yang LIU, Zhenxi WANG. Formation of framework supported pore for PVA/ZnO composite and Pb(Ⅱ) adsorption [J]. CIESC Journal, 2019, 70(S1): 130-140.
[5] Hongbin WANG, Jiajie PENG, Haiquan SUN, Quanwen PAN, Ruzhu WANG, Hailiang WANG, Zhaohong XU. Design and experimental study on silica gel-water adsorption air cooler [J]. CIESC Journal, 2019, 70(S1): 186-192.
[6] Wenyu LI, Liangliang SUN, Yanping YUAN, Xiaoling CAO, Bo XIANG. Heat storage and release characteristics of solar phase change Kang and influence factors [J]. CIESC Journal, 2019, 70(5): 1761-1771.
[7] Yamin LIU, Lei PENG, Fengying SU, Xiangxiang WANG, Yizhen HUANG, Zaichun LIN, Xiaojing YU, Yishan PEI. Study of CO2 adsorption on amine functionalized graphene oxide porous materials [J]. CIESC Journal, 2019, 70(5): 2016-2024.
[8] Linchen ZHOU, Zhigao SUN, Ling LU, Sai WANG, Juan LI, Cuimin LI. Formation and stability of HCFC–141b hydrate in organic phase change emulsion [J]. CIESC Journal, 2019, 70(5): 1674-1681.
[9] Donghai AN, Xiaolin HAN, Xingxing CHENG, Binxuan ZHOU, Ying ZHENG, Yong DONG. Effect mechanisms of different flue gas on adsorption of mercury by powder activated coke [J]. CIESC Journal, 2019, 70(4): 1575-1582.
[10] Yinjiao SU, Xuan LIU, Lifeng LI, Xiaohang LI, Ping JIANG, Yang TENG, Kai ZHANG. Distribution characteristics of mercury speciation in coals with three different ranks [J]. CIESC Journal, 2019, 70(4): 1559-1566.
[11] Mao LIN, Huosheng LI, Gaosheng ZHANG, Ping ZHANG, Jianyou LONG, Tangfu XIAO, Hongguo ZHANG, Jingfang XIONG, Yongheng CHEN. Removal of Tl from wastewater by nickel ferrite-based hydrothermal carbon coupled with hypochlorite oxidation [J]. CIESC Journal, 2019, 70(4): 1591-1604.
[12] Shunhao WANG, Wenli ZHU, Zhenggen HU, Rui ZHOU, Liu YU, Bin WANG, Xiaobin ZHANG. Numerical simulation and experimental validation of evaporation characteristics of scaled liquid hydrogen tank [J]. CIESC Journal, 2019, 70(3): 840-849.
[13] Qian ZHANG, Xiangyang LIU, Wang CHEN, Heng WU, Pengying XIAO, Fangying JI, Chen LI, Haiming NIAN. Preparation of a novel phosphorus removal filler and optimization of phosphate removal adsorption bed process [J]. CIESC Journal, 2019, 70(3): 1099-1110.
[14] Lu HAN, Fangwu MA, Shixian CHEN, Yongfeng PU, Liang SHEN. Mechanical properties of basalt fiber-reinforced polylactide matrix and aging resistance properties [J]. CIESC Journal, 2019, 70(3): 1171-1178.
[15] Xiaohang LI, Yun LIU, Yinjiao SU, Yang TENG, Yanjun GUAN, Kai ZHANG. Difference of fly ash characteristics from PC and CFB boilers and its effect on mercury adsorption capability [J]. CIESC Journal, 2019, 70(3): 1075-1082.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LING Lixia, ZHANG Riguang, WANG Baojun, XIE Kechang. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] LEI Zhigang, LONG Aibin, JIA Meiru, LIU Xueyi. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] SU Haifeng, LIU Huaikun, WANG Fan, LÜXiaoyan, WEN Yanxuan. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] WANG Jianlin, XUE Yaoyu, YU Tao, ZHAO Liqiang. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] SUN Fubao, MAO Zhonggui, ZHANG Jianhua, ZHANG Hongjian, TANG Lei, ZHANG Chengming, ZHANG Jing, ZHAI Fangfang. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] Gao Ruichang, Song Baodong and Yuan Xiaojing( Chemical Engineering Research Center, Tianjin University, Tianjin 300072). LIQUID FLOW DISTRIBUTION IN GAS - LIQUID COUNTER - CONTACTING PACKED COLUMN[J]. , 1999, 50(1): 94 -100 .
[7] Su Yaxin, Luo Zhongyang and Cen Kefa( Institute of Thermal Power Engineering , Zhejiang University , Hangzhou 310027). A STUDY ON THE FINS OF HEAT EXCHANGERS FROM OPTIMIZATION OF ENTROPY GENERATION[J]. , 1999, 50(1): 118 -124 .
[8] Luo Xiaoping(Department of Industrial Equipment and Control Engineering , South China University of Technology, Guangzhou 510641)Deng Xianhe and Deng Songjiu( Research Institute of Chemical Engineering, South China University of Technology, Guangzhou 5106. RESEARCH ON FLOW RESISTANCE OF RING SUPPORT HEAT EXCHANGER WITH LONGITUDINAL FLUID FLOW ON SHELL SIDE[J]. , 1999, 50(1): 130 -135 .
[9] Jin Wenzheng , Gao Guangtu , Qu Yixin and Wang Wenchuan ( College of Chemical Engineering, Beijing Univercity of Chemical Technology, Beijing 100029). MONTE CARLO SIMULATION OF HENRY CONSTANT OF METHANE OR BENZENE IN INFINITE DILUTE AQUEOUS SOLUTIONS[J]. , 1999, 50(2): 174 -184 .
[10]

LI Qingzhao;ZHAO Changsui;CHEN Xiaoping;WU Weifang;LI Yingjie

.

Combustion of pulverized coal in O2/CO2 mixtures and its pore structure development

[J]. , 2008, 59(11): 2891 -2897 .