CIESC Journal ›› 2019, Vol. 70 ›› Issue (1): 154-160.DOI: 10.11949/j.issn.0438-1157.20180557

• Separation engineering • Previous Articles     Next Articles

Structure optimization of cyclone based on response surface method

Pan XIONG1,2(),Shuguang YAN1,2(),Weiyin LIU1,2   

  1. 1. College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
    2. Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan 430081, Hubei, China
  • Received:2018-05-25 Revised:2018-10-24 Online:2019-01-05 Published:2019-01-05
  • Contact: Shuguang YAN

基于响应曲面法的旋风分离器结构优化

熊攀1,2(),鄢曙光1,2(),刘玮寅1,2   

  1. 1. 武汉科技大学资源与环境工程学院,湖北 武汉 430081
    2. 冶金矿产资源高效利用与造块湖北省重点实验室,湖北 武汉 430081
  • 通讯作者: 鄢曙光
  • 作者简介:熊攀(1993—),男,硕士研究生,<email>whxpan1993@163.com</email>|鄢曙光(1968—),男,博士,教授,<email>yanshg68@163.com</email>

Abstract:

To optimize the separation efficiency and energy loss of the cyclone separator, the main structural parameters affecting the performance of the cyclone separator are determined. The response surface model and CFD numerical simulation are used to select the dust outlet diameter (Dd), exhaust port diameter (De), and inlet velocity (V), and the pressure drop and the total separation efficiency are used as the objective functions, and the three-factor optimization design analysis is performed. The results show that the diameter of the exhaust port has little effect on the pressure drop and the separation efficiency. The diameter and velocity of the exhaust port have significant effects on the pressure drop and the separation efficiency, and the interaction between the diameter of the exhaust port and the velocity is obvious. For the current 0.5—10 μm particle group, the optimal parameters are De/D=0.35,Dd/D=0.37,V=12 m/s. Compared with the experimental structure, in the case of similar separation efficiency, the pressure drop is reduced by half, effectively reducing the energy consumption. The established response surface model can accurately represent the relationship between design variables and objective functions. Optimization design method based on response surface model can be effectively applied to structural optimization of cyclone separator. And different particle size requirements can use different structures for dust removal. To achieve the separation requirements of the premise, the structure of the minimum pressure drop is used. This study provides a favorable basis for the separation of 0.5—10 μm particle size structure.

Key words: cyclone, response surface, CFD numerical simulation, structural optimization, particles

摘要:

为了优化旋风分离器的分离效率和能量损耗,确定影响旋风分离器性能的主要结构参数,采用响应曲面模型和CFD数值模拟,以排尘口直径(Dd)、排气口直径(De)、入口速度(V)为设计变量,以压降和总分离效率为目标函数,进行三因素的优化设计分析。研究结果表明,排尘口直径对压降和分离效率影响不大,排气口直径与速度对压降和分离效率影响显著,且排气口直径与速度的交互作用明显。针对本次0.5~10 μm的颗粒群,推荐最优参数组合是De/D=0.35、Dd/D=0.37、V=12 m/s。与实验的结构相比,在相近的分离效率情况下,压降降低了一半,有效地减少了能耗。表明所建立的响应曲面模型能够较精确地表示设计变量与目标函数之间的关系,基于响应曲面模型的优化设计方法可以有效用于旋风分离器的结构优化。同时不同的粒径要求可以采用不同的结构进行除尘,在达到分离要求的前提下,采用最小压降的结构,本次研究为分离0.5~10 μm粒径的结构提供有利的依据。

关键词: 旋风分离器, 响应曲面, CFD数值模拟, 结构优化, 颗粒

CLC Number: