CIESC Journal ›› 2019, Vol. 70 ›› Issue (1): 154-160.doi: 10.11949/j.issn.0438-1157.20180557

• Separation engineering • Previous Articles     Next Articles

Structure optimization of cyclone based on response surface method

Pan XIONG1,2(),Shuguang YAN1,2(),Weiyin LIU1,2   

  1. 1. College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
    2. Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan 430081, Hubei, China
  • Received:2018-05-25 Revised:2018-10-24 Online:2019-01-05 Published:2018-10-25
  • Contact: Shuguang YAN E-mail:whxpan1993@163.com;yanshg68@163.com

Abstract:

To optimize the separation efficiency and energy loss of the cyclone separator, the main structural parameters affecting the performance of the cyclone separator are determined. The response surface model and CFD numerical simulation are used to select the dust outlet diameter (Dd), exhaust port diameter (De), and inlet velocity (V), and the pressure drop and the total separation efficiency are used as the objective functions, and the three-factor optimization design analysis is performed. The results show that the diameter of the exhaust port has little effect on the pressure drop and the separation efficiency. The diameter and velocity of the exhaust port have significant effects on the pressure drop and the separation efficiency, and the interaction between the diameter of the exhaust port and the velocity is obvious. For the current 0.5—10 μm particle group, the optimal parameters are De/D=0.35,Dd/D=0.37,V=12 m/s. Compared with the experimental structure, in the case of similar separation efficiency, the pressure drop is reduced by half, effectively reducing the energy consumption. The established response surface model can accurately represent the relationship between design variables and objective functions. Optimization design method based on response surface model can be effectively applied to structural optimization of cyclone separator. And different particle size requirements can use different structures for dust removal. To achieve the separation requirements of the premise, the structure of the minimum pressure drop is used. This study provides a favorable basis for the separation of 0.5—10 μm particle size structure.

Key words: cyclone, response surface, CFD numerical simulation, structural optimization, particles

CLC Number: 

  • TQ 051.8

Fig.1

Geometric model and grid"

Table 1

Influence of grid number on pressure drop and separation efficiency"

网格数量入口速度/(m/s)总压降/kPa总分离效率/%
982680161.30588.52
1179535161.31188.61
1435253161.29288.33
1786211161.29088.30
1978561161.31888.62

Fig.2

Rosin-Rammler cumulative distribution function"

Fig.3

Comparison of separation efficiency between experimental and simulation results"

Table 2

Factor level"

水平因素
X1X2X3
10.30.278
20.40.3716
30.50.4724

"

序号X1X2X3分离效率/%压降/kPa压降排名
122292.562.01867
222292.562.01867
312397.148.46721
432175.500.331815
522292.562.01867
633288.081.290311
712190.100.988012
811295.803.89884
932392.952.89856
1023182.650.509514
1131288.901.319710
1221183.800.523013
1321395.554.52772
1413295.443.78765
1533395.194.40743

Table 4

Variance analysis"

方差来源压降分离效率
平方和自由度均方差FP平方和自由度均方差FP
模型64.6597.1848.590.0002499.98955.55107.48< 0.0001
X115.96115.961080.0001136.621136.62264.33< 0.0001
X20.009410.00940.0640.81080.910.91.750.2431
X340.27140.27272.4< 0.0001297.181297.18574.98< 0.0001
X1X20.001710.00170.0110.91950.05310.0530.10.7619
X1X36.0316.0340.810.001427.08127.0852.390.0008
X2X30.002910.00290.0190.89490.1610.160.30.6055
X121.4111.419.520.02730.7110.711.380.2926
X220.01410.0140.0960.76920.01610.0160.0310.8674
X321.0611.067.160.044137.71137.7172.950.0004
残差0.7450.152.5850.52
总和65.3914502.5714

Fig.4

Influence of multi-factor conditions on separation efficiency"

Fig.5

Influence of multi-factor conditions on pressure drop"

Fig.6

Relationship between pressure drop and separation efficiency"

Table 5

Comparison of separation efficiency and pressure drop of optimized model"

参数优化后8 m/s[18]16 m/s[18]
压降/kPa1.534150.331832.89846
总分离效率/%92.575.592.8

Fig.7

Comparison of separation efficiency between optimized model and existing equipment"

1 LiJ W, CaiW J, DongB Y, et al. Experimental study on the performances of cyclone impulse electrostatic precipitator[J]. Acta Scientiae Circumstantiae, 2002, 22(2): 252-255.
2 GaoX, ChenJ, FengJ, et al. Numerical investigation of the effects of the central channel on the flow field in an oil–gas cyclone separator[J]. Computers & Fluids, 2014, 92(9): 45-55.
3 ChuahT G, GimbunJ, ChoongT S Y. A CFD study of the effect of cone dimensions on sampling aerocyclones performance and hydrodynamics[J]. Powder Technology, 2006, 162(2): 126-132.
4 王乐勤, 郝宗睿, 王循明, 等. 简体长度对旋风分离器内流场影响的数值模拟[J]. 工程热物理学报, 2009, 30(2): 223-226.
WangL Q, HaoZ R, WangX M, et al.Numerical simulation of flow field in cyclone of different height[J]. Journal of Engineering Thermophysics, 2009, 30(2): 223-226.
5 袁惠新, 姚宇婷, 付双成, 等.锥段长度对微型旋流分离器内流场影响的数值模拟[J]. 化工机械, 2011, 38(3): 341-344.
YuanH X, YaoY T, FuS C, et al. Numerical simulation of cone height influence on flow field in mini cyclone separator[J]. Chemical Machinery, 2011, 38(3): 341-344.
6 魏名山, 马朝臣.用PIV进行静电旋风除尘器流场的测定[J]. 北京理工大学学报, 2000, 20(4): 496-499.
WeiM S, MaC C. Measurement of the velocity field of ESCP with PIV[J]. Transaction of Beijing Institute of Technology, 2000, 20(4): 496-499.
7 李强.旋风除尘器优化设计及分离特性研究[D].长沙: 中南大学, 2008.
LiQ.Optimization design and separation characteristics of cyclone dust collector[D]. Changsha: Central South University, 2008.
8 高助威, 王江云, 王娟, 等. 蜗壳式旋风分离器内部流场空间的涡分析[J]. 化工学报, 2017, 68(8): 3006-3013.
GaoZ W, WangJ Y, WangJ, et al. Vortex analysis in flow field of cyclone separator with single volute inlet[J]. CIESC Journal, 2017, 68(8): 3006-3013.
9 吴小林, 熊至宜, 姬忠礼, 等. 旋风分离器旋进涡核的数值模拟[J]. 化工学报, 2007, 58(2): 383-390.
WuX L, XiongZ Y, JiZ L, et al. Numerical simulation of precessing vortex core in cyclone separator[J]. Journal of Chemical Industry and Engineering(China), 2007, 58(2): 383-390.
10 KaragozI, KayaF. CFD investigation of the flow and heat transfer characteristics in a tangential inlet cyclone [J]. International Communications in Heat & Mass Transfer, 2007, 34(9/10): 1119-1126.
11 赵新学, 金有海. 排尘口直径对旋风分离器壁面磨损影响的数值模拟[J]. 机械工程学报, 2012, 48(6): 142-148.
ZhaoX X, JinY H. Effect of dust discharge diameter on wall erosion in cyclone separator[J]. Journal of Mechanical Engineering, 2012, 48(6): 142-148.
12 高翠芝, 孙国刚, 董瑞倩. 排气管对旋风分离器轴向速度分布形态影响的数值模拟[J]. 化工学报, 2010, 61(9): 2409-2416.
GaoC Z, SunG G, DongR Q.Effect of vortex finder on axial velocity distribution patterns in cyclones[J].CIESC Journal, 2010, 61(9): 2409-2416.
13 付烜, 孙国刚, 刘佳, 等. 旋风分离器进口涡旋感生速度场的减阻增效作用[J]. 化工学报, 2011, 62(7): 1927-1932.
FuX, SunG G, LiuJ, et al. Effect of induced velocity on separation efficiency and pressure drop of cyclones caused by vortex in vortex-tube inlet pipe[J]. CIESC Journal, 2011, 62(7): 1927-1932.
14 GongG, YangZ, ZhuS. Numerical investigation of the effect of helix angle and leaf margin on the flow pattern and the performance of the axial flow cyclone separator[J]. Applied Mathematical Modelling, 2012, 36(8): 3916-3930.
15 GronaldG, DerksenJ J. Simulating turbulent swirling flow in a gas cyclone: a comparison of various modeling approaches[J]. Powder Technology, 2011, 205(1/2/3): 160-171.
16 WinfieldD, CrossM, CroftN, et al. Performance comparison of a single and triple tangential inlet gas separation cyclone: a CFD study[J]. Powder Technology, 2013, 235(2): 520-531.
17 王永菲, 王成国. 响应面法的理论与应用[J]. 中央民族大学学报(自然科学版), 2005, 14(3): 236-240.
WangY F, WangC G. The application of response surface methodology[J]. Journal of the CUN(Natural Sciences Edition), 2005, 14(3): 236-240.
18 JiangM, WangB. Numerical analysis of applied forces information exerted on particles in cyclone separators[J]. Powder Technology, 2016, 294(1): 437-448.
19 王福军.计算流体动力学分析[M]. 北京: 清华大学出版社, 2004.
WangF J. Computational Fluid Dynamics [M]. Beijing: Tsinghua University Press, 2004.
20 González-TelloP, CamachoF, VicariaJ M, et al. A modified Nukiyama-Tanasawa distribution function and a Rosin-Rammler model for the particle-size-distribution analysis[J]. Powder Technology, 2008, 186(3): 278-281.
21 SongC, PeiB, JiangM, et al. Numerical analysis of forces exerted on particles in cyclone separators[J]. Powder Technology, 2016, 294(1): 437-448.
22 HoffmannA C, SteinL E. Gas Cyclones and Swirl Tubes[M]. Springer Berlin Heidelberg, 2002.
23 王晶. 基于响应曲面法的多响应稳健性参数优化方法研究[D]. 天津: 天津大学, 2009.
WangJ. Robust parameter optimization for multi-response using response surface methodology[D]. Tianjin: Tianjin University, 2009.
[1] Qiang YU, Yuanwei LU, Xiaopan ZHANG, Yuting WU. Effect of nanoparticles on thermal properties of molten salt composite heat storage materials [J]. CIESC Journal, 2019, 70(S1): 217-225.
[2] Jihai DUAN, Shuaibiao HUANG, Chang GAO, Aqiang CHEN, Qingshan HUANG. Influence of slit structure in hydrocyclone conical section on solid-liquid separation performance [J]. CIESC Journal, 2019, 70(5): 1823-1831.
[3] Feifei YE, Baodan ZHANG, Haibo JIN, Xiaoyan GUO, Guangxiang HE, Rongyue ZHANG, Qingyang GU, Suohe YANG. Preparation of BaSO4 nanoparticles in microchannel reactor and its application in multifunctional layers of medical slices [J]. CIESC Journal, 2019, 70(3): 1179-1187.
[4] Qian ZHANG, Xiangyang LIU, Wang CHEN, Heng WU, Pengying XIAO, Fangying JI, Chen LI, Haiming NIAN. Preparation of a novel phosphorus removal filler and optimization of phosphate removal adsorption bed process [J]. CIESC Journal, 2019, 70(3): 1099-1110.
[5] Xiaoshi LIU, Deqiu ZOU, Ruijun HE, Xianfeng MA. Preparation and heat transfer characteristics of GO/paraffin composite phase change emulsions [J]. CIESC Journal, 2019, 70(3): 1188-1197.
[6] Channa WANG, Ling LIU, Huihua WANG, Tianpeng QU, Jun TIAN, Deyong WANG, Zhenhui KANG. Controllable preparation of Co-Fe-Pd nanoparticles and their catalytic activities toward oxygen reduction [J]. CIESC Journal, 2019, 70(1): 319-326.
[7] SONG Dihui, AN Luyang, ZHANG Litao, ZHANG Yafeng, XU Xinwei, WANG Yunan, WEI Huangzhao. Optimization of electrochemical coupling system process for coking waste water pretreatment by response surface method [J]. CIESC Journal, 2018, 69(9): 4001-4011.
[8] XU Zhonghuang, LEI Pingping, HONG Yubin, DING Matai, HE Xumin, LAN Weiguang. Preparation and performance of graphene oxide/basic aluminum sulfate doped polyethersulfone/polyamide composite nanofiltration membrane [J]. CIESC Journal, 2018, 69(9): 4066-4074.
[9] WANG Lu, ZHANG Xingfang, DONG Zhenzhou, ZHAO Zhongkai, YANG Jingxuan, HAO Xiaogang. Effect of inlet structure on transient properties of gas flow in cyclone separator [J]. CIESC Journal, 2018, 69(8): 3488-3501.
[10] WANG Anqi, WANG Yongliang, YE Liping, LU Yonggang, QIAN Peng, YE Shufeng. Optimization of recycling copper from copper oxide smelting slag by response surface methodology [J]. CIESC Journal, 2018, 69(7): 3018-3028.
[11] YE Feifei, GUO Xiaoyan, HOU Jing, LIU Xu, WANG Liangliang, WANG Ziyu, JIN Haibo. Synthesis of BaSO4 nanoparticles by double microemulsion method [J]. CIESC Journal, 2018, 69(6): 2767-2774.
[12] LIU Hongyan, HAN Tianlong, WANG Ya, HUANG Qingshan. Influence of new outlet configurations with baffle on hydrocycloneon separation performance [J]. CIESC Journal, 2018, 69(5): 2081-2088.
[13] ZHANG Ao, YANG Haicun, MA Wenzhong, LI Yuxue, GONG Fanghong, TAO Guoliang, LIU Chunlin. Preparation of attapulgite/polystyrene hybrid particles via simultaneous reverse and normal initiation atom transfer radical polymerization [J]. CIESC Journal, 2018, 69(5): 2299-2308.
[14] LIU Zhen, ZHANG Zhongqiang. Pressure-driven flow properties of fullerene nanofluid in graphene nanochannels [J]. CIESC Journal, 2018, 69(5): 1892-1899.
[15] LI Zhuangmei, WANG Yanmei, LI Ping, LI Heping, BAI Hongcun, GUO Qingjie. Macromolecular model construction and quantum chemical calculation of Ningdong Hongshiwan coal [J]. CIESC Journal, 2018, 69(5): 2208-2216.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LING Lixia, ZHANG Riguang, WANG Baojun, XIE Kechang. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] LEI Zhigang, LONG Aibin, JIA Meiru, LIU Xueyi. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] SU Haifeng, LIU Huaikun, WANG Fan, LÜXiaoyan, WEN Yanxuan. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] WANG Jianlin, XUE Yaoyu, YU Tao, ZHAO Liqiang. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] SUN Fubao, MAO Zhonggui, ZHANG Jianhua, ZHANG Hongjian, TANG Lei, ZHANG Chengming, ZHANG Jing, ZHAI Fangfang. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] Gao Ruichang, Song Baodong and Yuan Xiaojing( Chemical Engineering Research Center, Tianjin University, Tianjin 300072). LIQUID FLOW DISTRIBUTION IN GAS - LIQUID COUNTER - CONTACTING PACKED COLUMN[J]. , 1999, 50(1): 94 -100 .
[7] Su Yaxin, Luo Zhongyang and Cen Kefa( Institute of Thermal Power Engineering , Zhejiang University , Hangzhou 310027). A STUDY ON THE FINS OF HEAT EXCHANGERS FROM OPTIMIZATION OF ENTROPY GENERATION[J]. , 1999, 50(1): 118 -124 .
[8] Luo Xiaoping(Department of Industrial Equipment and Control Engineering , South China University of Technology, Guangzhou 510641)Deng Xianhe and Deng Songjiu( Research Institute of Chemical Engineering, South China University of Technology, Guangzhou 5106. RESEARCH ON FLOW RESISTANCE OF RING SUPPORT HEAT EXCHANGER WITH LONGITUDINAL FLUID FLOW ON SHELL SIDE[J]. , 1999, 50(1): 130 -135 .
[9] Jin Wenzheng , Gao Guangtu , Qu Yixin and Wang Wenchuan ( College of Chemical Engineering, Beijing Univercity of Chemical Technology, Beijing 100029). MONTE CARLO SIMULATION OF HENRY CONSTANT OF METHANE OR BENZENE IN INFINITE DILUTE AQUEOUS SOLUTIONS[J]. , 1999, 50(2): 174 -184 .
[10]

LI Qingzhao;ZHAO Changsui;CHEN Xiaoping;WU Weifang;LI Yingjie

.

Combustion of pulverized coal in O2/CO2 mixtures and its pore structure development

[J]. , 2008, 59(11): 2891 -2897 .