CIESC Journal ›› 2019, Vol. 70 ›› Issue (1): 417-424.doi: 10.11949/j.issn.0438-1157.20180556

• Process safety • Previous Articles    

ARC thermal inertia correction method based on C80 data merging

Jiong DING(),Qi CHEN,Qiyue XU,Suijun YANG,Shuliang YE()   

  1. Institute of Industry and Trade Measurement Technology, China Jiliang University, Hangzhou 310018, Zhejiang, China
  • Received:2018-05-25 Revised:2018-10-27 Online:2019-01-05 Published:2018-10-29
  • Contact: Shuliang YE E-mail:dingjiong@cjlu.edu.cn;itmt_paper@126.com

Abstract:

Due to the limit of the principle of accelerating rate calorimeter, thermal inertia factor correction is necessary for kinetics computation. However, the existing correction methods are contrary to the fact that the thermal inertia factor is shifty during the reaction process. Actually, the specific heat of the reactant and the efficiency of temperature tracking change with the reaction process. This leads to the kinetic computation errors. In response to these deficiencies, a method is proposed that the dynamical thermal inertia factor correction based on differential scanning calorimeter (C80) and accelerating rate calorimeter (ARC) data merging. The details of the method are as followed. Firstly, according to the Friedman method, the non-model kinetics parameters are obtained with the C80 data. Secondly, the product of the heat capacity and the equivalent thermal inertia factor is got through using the non-model kinetics parameters to solve the accelerating rate calorimeter data. Third, with the replacement of constant thermal inertia factor and the specific heat by the product, the kinetics results of ARC data are calculated. To verify the validity of the proposed method, the experiments are performed by using di-tert-butyl peroxide (DTBP) and cumene hydroperoxide (CHP). The results show that the proposed methods can avoid the influence of the dynamical thermal inertia factor in kinetic computation. It is worth popularizing in the thermal safety evaluation of chemical process.

Key words: reaction kinetic, safety, kinetic modeling, thermal inertia factor, accelerating rate calorimeter, differential scanning calorimeter

CLC Number: 

  • TQ 013.2

Fig.1

Reaction rate curves of DTBP at different heating rates"

Table1

C80 experiment data of DTBP at different heating rates"

样品

质量/mg

扫描速率/

(℃?min-1)

起始放热

温度/℃

峰值

温度/℃

反应热/

(J?g-1)

300.50.2121.3149.61351.6
301.00.5131.3163.51311.8
300.01142.9173.21244.4
300.32155.8185.01235.9

Fig.2

Relationship between ln( dα/dt) and 1000/T of DTBP at different heating rates"

Fig.3

Relationship curves between Eα, ln(Aαf(α)) and α"

Fig.4

Temperature-time curve of DTBP from ARC"

Fig.5

Relation diagram of ?equcs and temperature"

Fig.6

Two fitting methods of temperature-temperature rise rate fitting curves"

Table 2

Comparison results of kinetic parameters from two methods"

MethodE/(kJ?mol-1)lnA/s-1nTD24/℃SS
ARC138.531.30.9781.66.8×10-4
ARC+C80152.037.11.0072.33.4×10-4

Fig.7

Two fitting methods of temperature-time fitting curves"

Fig.8

Reaction rate curves of CHP at different heating rates"

Table 3

C80 experiment data of CHP at different heating rates"

样品

质量/mg

扫描速率/

(℃?min-1)

起始放热

温度/℃

峰值

温度/℃

反应

放热/(J?g-1)

200.20.2127.0134.81637.1
200.10.5141.4153.11611.3
200.01153.9165.51572.2
200.02158.2173.71526.1

Fig.9

Relationship curves between ln(dα/dt)and 1000/T of CHP at different heating rates"

Fig.10

Relationship between Eα,ln(Aαf(α))and α"

Fig.11

Temperature-time curve of CHP from ARC"

Fig.12

Relation diagram of ?equcs and temperature"

Fig.13

Two fitting methods of temperature-temperature rise rate fitting curves"

Fig.14

Two fitting methods of temperature-time fitting curves"

Table 4

Comparison results of kinetic parameters from two methods"

MethodE/(kJ?mol-1)lnA/s-1n1n2zTD24/℃SS
ARC128.830.490.980.950.2071.55.9×10-5
ARC+C80137.732.500.701.000.1580.92.7×10-5
1 孙金华, 丁辉. 化学物质热危险性评价[M]. 北京: 科学出版社, 2005.
SunJ H, DingH. Thermal Risk Evaluation of Chemical Substance[M]. Beijing: Science Press, 2005.
2 IizukaY, SurianarayananM. Comprehensive kinetic model for adiabatic decomposition of di-tert-butyl peroxide using batch CAD[J]. Industrial & Engineering Chemistry Research, 2003, 42(13): 2987-2995.
3 SridharV P, SurianarayananM, MandalA B. Accelerating rate calorimeter studies of water-induced thermal hazards of fireworks tip mixture[J]. Journal of Thermal Analysis & Calorimetry, 2013, 112(3): 1335-1341.
4 KossoyA, SheinmanI. Effect of temperature gradient in sample cells of adiabatic calorimeters on data interpretation[J]. Thermochimica Acta, 2010, 500(1): 93-99.
5 TownsendD I, TouJ C. Thermal hazard evaluation by an accelerating rate calorimeter[J]. Thermochimica Acta, 1980, 37(1): 1-30.
6 FisherH G, GoetzD D. Determination of self-accelerating decomposition temperatures using the accelerating rate calorimeter[J]. Journal of Loss Prevention in the Process Industries, 1991, 4(5): 305-316.
7 FisherH G, GoetzD D. Determination of self-accelerating decomposition temperatures for self-reactive substances[J]. Journal of Loss Prevention in the Process Industries, 1993, 6(3): 183-194.
8 KossoyA A, SinghJ, KoludarovaE Y. Mathematical methods for application of experimental adiabatic data — an update and extension[J]. Journal of Loss Prevention in the Process Industries, 2015, 33(1): 88-100.
9 尹瑞丽. 热修正系数对绝热量热结果的影响研究[D]. 南京: 南京理工大学, 2016.
YinR L. Impacts of thermal correction factor on adiabatic calorimetry results[D]. Nanjing: Nanjing University of Science and Technology, 2016.
10 XuQ Y, DingJ, YangS J, et al. Modeling of a power compensated adiabatic reaction system for temperature control design and simulation analyses[J]. Thermochimica Acta, 2017, 657(1): 104-109.
11 WilcockE, RogersR L. A review of the phi factor during runaway conditions[J]. Journal of Loss Prevention in the Process Industries, 1997, 10(5): 289-302.
12 周奕杉, 陈利平, 陈网桦, 等.甲苯一段硝化产物TD24的获取[J]. 化工学报, 2014, 65(11): 4383-4391.
ZhouY S, ChenL P, ChenW H, et al. TD24 determination for mono-nitration products of toluene[J]. CIESC Journal, 2014, 65(11): 4383-4391.
13 WhitmoreM W, WilberforceJ K. Use of the accelerating rate calorimeter and the thermal activity monitor to estimate stability temperatures[J]. Journal of Loss Prevention in the Process Industries, 1993, 6(2): 95-101.
14 VyazovkinS, BurnhamA K, CriadoJ M, et al. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochimica Acta, 2011, 520(1): 1-19.
15 FriedmanH L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic[J]. Journal of Polymer Science Part C Polymer Symposia, 1964, 6(1): 183-195.
16 KossoyA A, KoludarovaE. Specific features of kinetics evaluation in calorimetric studies of runaway reactions[J]. Journal of Loss Prevention in the Process Industries, 1995, 8(4): 229-235.
17 RoduitB, HartmannM, FollyP, et al. Thermal decomposition of AIBN(Part B): Simulation of SADT value based on DSC results and large scale tests according to conventional and new kinetic merging approach[J]. Thermochimica Acta, 2015, 621(1): 6-24.
18 MiyakeA, SuminoM, OkaY, et al. Prediction and evaluation of the reactivity of self-reactive substances using microcalorimetries[J]. Thermochimica Acta, 2000, 352/353: 181-188.
19 ChouY P, HuangJ Y, TsengJ M, et al. Reaction hazard analysis for the thermal decomposition of cumene hydroperoxide in the presence of sodium hydroxide[J]. Journal of Thermal Analysis & Calorimetry, 2008, 93(1): 275-280.
20 RoduitB, HartmannM, FollyP, et al. Prediction of thermal stability of materials by modified kinetic and model selection approaches based on limited amount of experimental points[J]. Thermochimica Acta, 2014, 579(5): 31-39.
21 KimuraA, OtsukaT. Performance evaluation of differential accelerating rate calorimeter for the thermal runaway reaction of di- tert -butyl peroxide[J]. Journal of Thermal Analysis & Calorimetry, 2013, 113(3): 1585-1591.
22 董泽, 陈利平, 陈网桦, 等. 40%DCP溶液的热分解模型[J]. 化工学报, 2017, 68(5): 1773-1779.
DongZ, ChenL P, ChenW H, et al. Thermal decomposition model for solution of 40% dicumyl peroxide[J]. CIESC Journal, 2017,68(5): 1773-1779.
23 MoukhinaE. Thermal decomposition of AIBN Part C: SADT calculation of AIBN based on DSC experiments[J]. Thermochimica Acta, 2015, 621(1): 25-35.
24 黄艳军, 谢传欣, 曹居正, 等. 过氧化氢异丙苯热稳定性与热安全性研究[J]. 中国安全科学学报, 2011, 21(6): 116-122.
HuangY J, XieC X, CaoJ Z, et al. Study on thermal stability and thermal safety of cumene hydroperoxide[J]. China Safety Science Journal, 2011, 21(6): 116-122.
25 金满平, 孙峰, 石宁, 等. 水和弱酸对过氧化氢异丙苯热危险性的影响[J]. 化工学报, 2012, 63(12): 4096-4102.
JinM P, SunF, ShiN, et al. Influence of water and weak acid on thermal hazard of cumene hydroperoxide[J]. CIESC Journal, 2012, 63(12): 4096-4102.
26 孙峰, 薛岩, 谢传欣, 等. 有机过氧化物分解机理及热危害[J]. 化工学报, 2012, 63(8): 2431-2436.
SunF, XueY, XieC X, et al. Decomposition kinetics and thermal hazard of organic peroxides[J].CIESC Journal, 2012, 63(8): 2431-2436.
27 DuhY S, KaoC S, HwangH H, et al. Thermal decomposition kinetics of cumene hydroperoxide[J]. Process Safety & Environmental Protection, 1998, 76(4): 271–276.
28 ChenK Y, WuS H, WangY W, et al. Runaway reaction and thermal hazards simulation of cumene hydroperoxide by DSC[J]. Journal of Loss Prevention in the Process Industries, 2008, 21(1): 101-109.
29 江美丽, 郑俊鹤, 王犇. 过氧化二异丙苯的热稳定性及安全性研究[J]. 安全与环境学报, 2014, 14(1): 117-121.
JiangM L, ZhengJ H, WangB. On the thermal stability and safety of dicumyl peroxide[J]. Journal of Safety & Environment, 2014, 14(1): 117-121.
30 胡荣祖, 史启祯. 热分析动力学[M]. 北京: 科学出版社, 2001.
HuR Z, ShiQ Z. Thermal Analysis Kinetics[M]. Beijing: Science Press, 2001.
[1] Zhixin SHANG, Xianglan ZHANG. DFT study on effects of hydrolysis degrees of 3-mercaptopropyltriethoxysilane on grafting mechanisms of nano-silica [J]. CIESC Journal, 2019, 70(5): 1663-1673.
[2] Jingchun YAN, Laihong SHEN, Shouxi JIANG, Huijun GE. Chemical looping combustion of high-sodium coal and gasification kinetics of coal char [J]. CIESC Journal, 2019, 70(5): 1913-1922.
[3] Shipin YANG, Zhen HUANG, Lijuan LI, Jianquan SONG, Jing YE, Hui WANG. A deep dive diagnostic and correction algorithm for mismatched sub-models in complicated chemical processes [J]. CIESC Journal, 2019, 70(4): 1485-1493.
[4] Desheng LI, Chao ZHANG, Shihai DENG, Zhifeng HU, Jinlong LI, Yuanhui LIU. Experimental study on effective nitrate removal from sewage by ZVI-based catalyzed reduction [J]. CIESC Journal, 2019, 70(3): 1065-1074.
[5] Kaixiang PENG, Chuanfang ZHANG, Liang MA, Jie DONG, Ruihua JIAO, Peng TANG. System-levels-based holographic fault diagnosis for complex industrial processes [J]. CIESC Journal, 2019, 70(2): 590-598.
[6] Yongfei XUE, Yalin WANG, Bei SUN, Qianzhong LI, Jiazhou SUN. Improved state transfer algorithm-based kinetics parameter estimation for cascaded plug flow reactors [J]. CIESC Journal, 2019, 70(2): 607-616.
[7] Shan DOU, Guangyu ZHANG, Zhihua XIONG, Huangang WANG. Danger situation awareness of chemical industry park based on multiple source data fusion [J]. CIESC Journal, 2019, 70(2): 460-466.
[8] Bo DAI, Zeyu ZHOU, Yan ZHANG, Shuangshuang LIN, Xuejun LIU. Design of safe distance monitoring system for hazardous chemicals storage stack [J]. CIESC Journal, 2019, 70(2): 707-715.
[9] Xiangkun MENG, Guoming CHEN, Chunliang ZHENG, Xiangfei WU, Gaogeng ZHU. Risk evaluation model of deepwater drilling blowout accident based on risk entropy and complex network [J]. CIESC Journal, 2019, 70(1): 388-397.
[10] Yi ZHU, Hao WANG, Liping CHEN, Zichao GUO, Zhongqi HE, Wanghua CHEN. Calculate time to maximum rate under adiabatic condition by numerical calculation method [J]. CIESC Journal, 2019, 70(1): 379-387.
[11] XU Wenxing, LIANG Jingjing, BIAN Weibin, DAI Bo, TAO Guanliang, LIU Cai. Spontaneous path selection for hazardous chemical transportation based on quasi-decision tree pruning [J]. CIESC Journal, 2018, 69(S2): 324-329.
[12] ZHU Linlin, HUANGFU Lixia, GUO Kaihua. Current status and recent progress of LNG navigation safety standards [J]. CIESC Journal, 2018, 69(S2): 1-8.
[13] ZHOU Xinzhi, SHAO Lun, CUI Ke, YANG Yang, ZHOU Yu, ZHANG Ruobin. Research on multi-stage power control system of lignite microwave drying production line [J]. CIESC Journal, 2018, 69(S2): 274-282.
[14] XUE Chao, MAO Yanpeng, WANG Wenlong, SONG Zhanlong, ZHAO Xiqiang, SUN Jing, WANG Yanxiang. Treatment of phenol wastewater by microwave catalytic wet oxidation under high pressure [J]. CIESC Journal, 2018, 69(S2): 210-217.
[15] SONG Rui, JIN Guangyuan, CUI Zhengwei, SONG Chunfang, CHEN Haiying. Dielectric properties of mixed materials in transesterification reaction system [J]. CIESC Journal, 2018, 69(8): 3670-3677.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LING Lixia, ZHANG Riguang, WANG Baojun, XIE Kechang. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] LEI Zhigang, LONG Aibin, JIA Meiru, LIU Xueyi. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] SU Haifeng, LIU Huaikun, WANG Fan, LÜXiaoyan, WEN Yanxuan. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] WANG Jianlin, XUE Yaoyu, YU Tao, ZHAO Liqiang. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] SUN Fubao, MAO Zhonggui, ZHANG Jianhua, ZHANG Hongjian, TANG Lei, ZHANG Chengming, ZHANG Jing, ZHAI Fangfang. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] Gao Ruichang, Song Baodong and Yuan Xiaojing( Chemical Engineering Research Center, Tianjin University, Tianjin 300072). LIQUID FLOW DISTRIBUTION IN GAS - LIQUID COUNTER - CONTACTING PACKED COLUMN[J]. , 1999, 50(1): 94 -100 .
[7] Su Yaxin, Luo Zhongyang and Cen Kefa( Institute of Thermal Power Engineering , Zhejiang University , Hangzhou 310027). A STUDY ON THE FINS OF HEAT EXCHANGERS FROM OPTIMIZATION OF ENTROPY GENERATION[J]. , 1999, 50(1): 118 -124 .
[8] Luo Xiaoping(Department of Industrial Equipment and Control Engineering , South China University of Technology, Guangzhou 510641)Deng Xianhe and Deng Songjiu( Research Institute of Chemical Engineering, South China University of Technology, Guangzhou 5106. RESEARCH ON FLOW RESISTANCE OF RING SUPPORT HEAT EXCHANGER WITH LONGITUDINAL FLUID FLOW ON SHELL SIDE[J]. , 1999, 50(1): 130 -135 .
[9] Jin Wenzheng , Gao Guangtu , Qu Yixin and Wang Wenchuan ( College of Chemical Engineering, Beijing Univercity of Chemical Technology, Beijing 100029). MONTE CARLO SIMULATION OF HENRY CONSTANT OF METHANE OR BENZENE IN INFINITE DILUTE AQUEOUS SOLUTIONS[J]. , 1999, 50(2): 174 -184 .
[10]

LI Qingzhao;ZHAO Changsui;CHEN Xiaoping;WU Weifang;LI Yingjie

.

Combustion of pulverized coal in O2/CO2 mixtures and its pore structure development

[J]. , 2008, 59(11): 2891 -2897 .